论文阅读笔记
文章平均质量分 88
York1996
懒人一枚,热爱提高效率,简化流程,自动办公;
展开
-
Learning to Predict Context-adaptiveConvolution for Semantic Segmentation阅读笔记
作者里面有个大牛李洪生李鸿升 - 知乎 (zhihu.com)单位的话有港中文大学,商汤科技,深圳计算机视觉和模式识别研究院等等摘要:长距离的上下文信息对于实现高质量的语义分割是必不可少的。之前特征加权的方式证明了使用全局的上下文信息可以提高语义分割的精度,但是全局共享的特征加权可能对于输入图片中的不同类别的区域不是最优的。因此,本文提出了上下文自适应卷积网络。这个网络的特点是对于不同的位置预测不同的加权特征。看到这里,感觉是用了动态卷积核,就是根据输入的不同,生成不同的卷...原创 2021-11-04 14:03:53 · 352 阅读 · 0 评论 -
对PointPainting: Sequential Fusion for 3D Object Detection的理解
题目:PointPainting: Sequential Fusion for 3D Object Detection文章链接:https://arxiv.org/pdf/1911.10150.pdf方法在看PointPainting之前有想过把图像的RGB属性投影到点云上,这样每个点云就不止有xyzr属性,还有了RGB属性,应该对精度提升有帮助,同时又不会有太多计算量。这个文章刚构思的...原创 2020-01-06 10:20:22 · 2534 阅读 · 1 评论 -
3D Shape Retrieval using Volumetric and Image CNNs: A Meta Algorithmic Approach阅读笔记
1,该论文的网络组成:一个网络用来处理二维多视图得到的图片,另外两个网络用来处理体素表示的三维物体2,3D物体的分类和识别的作用三维物体生成(3D object creation) 3D打印(3D printing) 数字制造(3D digital manufacturing)举例子:对于我们要用到的物体,第一步可以把它扫描成3D点云(point cloud),然后比它转换成CA...原创 2018-08-10 16:27:41 · 743 阅读 · 0 评论 -
RGB-D Scene Classification via Multi-modal Feature Learning论文翻译
摘要以前的方法大部分是用全局信息来进行场景的分类,并且把图像中所有的像素用来高级别的任务。它们只是把RGB和深度信息连接起来,没有探索RGB和深度的关系和互补性,也没有考虑局部特征的分布。从人的观点来看,我们识别物体的种类一般是通过:外观,纹理,形状和深度。不同物体之间的结构分布也要考虑。基于这个观察,建立一个中级别的物体区分性的表示应该会对场景分析很有效。作者提出了LM-CNN(new Co...翻译 2018-08-12 15:08:12 · 1235 阅读 · 0 评论 -
pytorch:DCGAN生成动漫头像
动漫头像数据集下载地址:动漫头像数据集_百度云连接,DCGAN论文下载地址:https://arxiv.org/abs/1511.06434数据集里面的图片是这个样子的:这是DCGAN的主要改进地方:下面是所有代码:第一个模块:import torchimport torch.nn as nnimport numpy as npimport torch.nn....原创 2018-09-20 10:15:40 · 7135 阅读 · 14 评论