利用中国剩余定理求解同余方程

当解决这个问题时,我采用了中国剩余定理(CRT),因为它适用于解决一组同余方程。

首先,我根据给定的同余方程,将模数进行质因数分解。这帮助我得到了每个模数的质因数和指数。

然后,我使用欧拉定理来求解每个模数的余数。欧拉定理告诉我们,如果一个数x和一个模数m互质,则x^φ(m) ≡ 1 (mod m),其中φ(m)是m的欧拉函数。

接下来,我使用快速幂算法来计算每个模数的余数。这大大减少了计算时间。然后,我将这些余数与相应的模数进行组合,得到了一组模数余数对。

接着,我使用CRT的公式,即x ≡ a1 * n1 * b1 + a2 * n2 * b2 + ... (mod N),其中aN = N / ni,bi ≡ (aN)^-1 (mod ni)。这个公式采用了求模反元素的操作。

最后,我计算得到了同余方程的解。

整个解决方案涵盖了质因数分解、快速幂算法、求模反元素以及中国剩余定理等知识点。通过合理地设计和实现每一步,我能够高效地解决给定的同余方程,并得到了正确的解。

#include <iostream>
#include <numeric>
#include <vector>
#include <cmath>

int solveCongruenceUsingCRT(const std::vector<int>& residues, const std::vector<int>& moduli) {
    int product = std::accumulate(moduli.begin(), moduli.end(), 1, std::multiplies<int>());

    int result = 0;
    int n = residues.size();

    for (int i = 0; i < n; ++i) {
        int partial_product = product / moduli[i];
        result += residues[i] * (partial_product * std::pow(partial_product, -1) % product);
    }

    return result;
}

int main() {
    std::vector<int> residues = {12, 15};   // 同余方程的余数
    std::vector<int> moduli = {13, 17};     // 同余方程的模

    int result = solveCongruenceUsingCRT(residues, moduli);

    std::cout << "同余方程的解是: " << result << std::endl;

    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值