【医学影像 AI】FARFUM-RoP 早产儿视网膜病变数据集


0. 论文简介

2024年5月,伊朗 Ferdowsi University of Mashhad 的 Morteza Akbari, Hamid-Reza Pourreza、Tehran University of Medical Sciences 的 Elias Khalili Pour 等在 Nature 子刊 scientific data 发表论文 “FARFUM-RoP:早产儿视网膜病变数据集(FARFUM-RoP, A dataset for computer-aided detection of Retinopathy of Prematurity)”,发布了一个新的公开数据集 FARFUM-RoP。该数据集包含来自 68 名患者 的 1,533 张 ROP 眼底图像。

论文下载: nature s41597-024-03897-7
数据集下载: figshare 6721269
引用格式:
Akbari, M., Pourreza, HR., Khalili Pour, E. et al. FARFUM-RoP, A dataset for computer-aided detection of Retinopathy of Prematurity. Sci Data 11, 1176 (2024). https://doi.org/10.1038/s41597-024-03897-7
发表日期:
收到日期:2024年1月9日
接受日期:2024年9月17日
出版日期:2024年10月30日


1. 摘要

早产儿视网膜病变(ROP) 是一种影响早产儿的关键眼部疾病,其特征是视网膜血管的异常发育。Plus Disease 是 ROP 严重进展的标志,在诊断中起着关键作用。

近年来,人工智能(AI) 在 ROP 检测(尤其是 Plus Disease)方面取得了显著进展,其表现已达到甚至超过人类专家水平。然而,AI 系统的成功依赖于高质量的数据集,这凸显了研究人员之间合作和数据共享的重要性。

为了解决这一挑战,本文引入了一个新的公开数据集 FARFUM-RoP(Farabi 和 Ferdowsi 大学马什哈德分校的 ROP 数据集),该数据集包含来自 68 名患者 的 1,533 张 ROP 眼底图像,并由 五位经验丰富的儿童眼科医生 独立标注为 “正常(Normal)”、“Pre-Plus” 或 “Plus”。

数据收集过程中严格遵守了伦理原则和知情同意。本文还详细介绍了数据集的结构、患者信息和专家标注。

在这里插入图片描述


2. 背景和结论

早产儿视网膜病变(ROP) 是一种 可能导致失明的眼科疾病,主要影响 早产婴儿,特别是那些 妊娠未满 31 周的婴儿。这种病变的特点是视网膜血管的异常发育,尤其在早产婴儿 中,视网膜的血管发育不完全,导致视网膜无法获得足够的血液供应。ROP 的一个关键指标是“Plus Disease”,这是一种严重的表现,表意味着病情进展迅速。

ROP 的发病机制与病理生理:
本文深入研究了 ROP 和 Plus Disease 的病因、病理生理学、临床特征、管理和影响,并参考了一系列学术资料。ROP从根本上与早产和低出生体重密切相关。早产儿视网膜血管发育不完全是一个关键因素(1)。在早产婴儿出生后,如果暴露在过高浓度的氧气环境下(如在新生儿重症监护中),会抑制视网膜血管的正常生长,导致新生血管的异常生长(2)。“Plus Disease” 是ROP疾病严重程度的重要指标,病变的表现是 视网膜后血管扩张和曲张,表明病变活动明显增加(3)。

ROP 的诊断与分类:
ROP 的诊断主要是基于视网膜检查的临床诊断。国际早产儿视网膜病变分类(ICROP, International Committee for the Classification of Retinopathy of Prematurity)根据区域、病变阶段和并发症的存在对ROP 进行分类(ICROP 2005)。
Plus Disease 的诊断是通过将视网膜血管照片与标准照片进行比较来确定的,即通过观察视网膜血管的变化与标准图像之间的差异来判断(4)。

ROP 的治疗与管理:
ROP 的早期发现和治疗至关重要。ROP 的管理包括由儿科眼科医生定期进行眼部检查。治疗选择包括激光治疗、冷冻治疗和抗VEGF注射,主要目的是预防或减缓视网膜脱落的进程(5)。ROP 病情严重而未经治疗可能导致视网膜脱离和失明。早期治疗,特别是在 Plus Disease 病例中,可以显著改善预后。长期随访至关重要,因为这些婴儿有患其他视力障碍的风险(6,7)。

人工智能(AI)在诊断 ROP 和 Plus Disease 的应用代表了儿科眼科的突破性转变。利用先进的人工智能技术,如机器学习和深度学习,可以提高诊断的准确性、效率和可及性。人工智能的最新发展涉及创建能够分析视网膜图像以检测 ROP 和 Plus Disease 的复杂算法。这些算法在广泛的数据集上进行训练,能够高精度地识别细微的病变指标,从而 提高诊断的精度(8)。最近的研究表明,人工智能在 ROP 的诊断能力上,已经达到或超过人类专家的水平。尤其在 Plus Disease 这类复杂的血管变化中,AI 的 检测能力显著增强,能够 更早、更可靠地发现病变,从而提高早期诊断和干预的可能性(9)。

人工智能(AI) 在 ROP(早产儿视网膜病变) 诊断中的应用,标志着 儿科眼科领域的一次重大突破。然而,人工智能系统的效果和准确性在很大程度上取决于其训练和验证中使用的数据集的质量和数量。了提高 AI 在 ROP 诊断中的应用效果,必须 使用高质量的公共数据集 来训练 AI。数据集的多样性和质量直接影响 AI 系统的学习效果,从而影响其诊断的准确性。数据共享促使 研究人员、临床医生和开发者之间的合作,如果有公共数据集可以使用,大家可以 汇集资源与专业知识,进而促进更 创新和有效的AI解决方案 的出现。这种协作环境可以加速AI的发展,加强其对 ROP 诊断的影响。尽管合作和数据共享具有巨大优势,但但目前 研究人员面临的挑战 是,因为 缺乏适用的公开数据集,因此无法精确评估和比较彼此的结果。为了应对数据集缺乏的问题,一些研究人员选择 生成私有数据集这进一步限制了 AI 系统的 跨团队、跨研究的对比与评估。

我们在本文提出了一个 ROP 眼底图像公共数据集,称为 FARFUM-RoP( Farabi 和 Ferdowsi University of Mashhad)的 公共ROP数据集,该数据集旨在用于研究和教育 目的的计算机辅助检测。该数据集包含 68名患者的 ROP 眼底图像,共1533 张图片。由五位专业的儿科眼科医生独立标注,将每张图像分类为:Normal(正常)、Pre-Plus(早期病变)和 Plus(加重型病变)。


3. 与其它 ROP 数据集的比较

目前,没有与ROP(早产儿视网膜病变)相关的公开图像库,FARFUM ROP 作为公共资源提供 。
为了进行比较,表1 给出了几个与 ROP 相关的图像库,所有这些图像库都是私有的,详细信息来自各自的出版物中。在 ROP 领域,唯一公开可用的公共数据集是 HVDROPDB10,这是一个非常有价值的数据集,也是第一个用于早产儿眼底图像中视网膜结构分割的公开数据集。
在这里插入图片描述
FARFUM RoP 与其它 RoP 私有数据集的比较


4. 方法

伦理考虑

本研究严格遵守《赫尔辛基宣言》中概述的伦理原则,确保所有参与者的福利和保密性。该研究已获得德黑兰医科大学机构审查委员会的批准(伦理批准号:IR.TUMS.FARABIH.REC.1400.073)。从每位参与者的父母那里获得书面知情同意书,明确允许他们的婴儿接受成像并参与研究。此外,Farabi 医院伦理委员会出于以下原因决定豁免公开数据所需的父母同意。为了保护隐私,专家技术人员在将所有图像纳入数据集之前对其进行匿名处理,以降低任何隐私泄露的风险。

  1. 数据性质:收集的视网膜图像不包括图像本身以外的任何个人身份信息。所有数据都是匿名的,以确保儿科患者的隐私和机密性。
  2. 使用和存储:这些图像存储在Farabi医院的图像库中,将用于眼科网络和研究项目。这些图像不会与儿童的任何可识别信息相关联。
  3. 公开发布豁免:鉴于数据的匿名性以及对科学研究和公共卫生的潜在重大贡献,伦理委员会决定豁免公开发布此数据集的父母同意要求。这一决定是基于这样一种理解,即公开出版物不会损害相关患者的隐私或安全。
  4. 伦理考虑:委员会承认,公开发布该数据集对于眼科研究的进步至关重要。伦理考虑与潜在风险相平衡,并且确定公开发布这个匿名数据集的好处远远超过任何潜在风险。
  5. 遵守政策:这一决定符合Farabi医院的道德标准和政策以及有关人类数据研究的国际准则。

图像采集和选择

该数据库包含了来自 伊朗的早产婴儿 的 广角后视网膜图像,这些图像是在 2016年4月到2019年5月 期间采集的。这些婴儿符合 早产儿视网膜病变(ROP)筛查标准,特别是出生体重低于 2000 克,妊娠周数小于 34 周(早产婴儿)。
这些图像是在伊朗德黑兰医科大学附属 Farabi 眼科医院的 ROP 病房作为常规临床护理的一部分进行采集的。在拍摄前,使用散瞳滴眼液,包括稀释的苯肾上腺素和托吡卡胺滴眼液来扩张瞳孔。每只眼睛分别滴三次眼药水,每次给药间隔 10分钟。在第三次滴药后,暂停婴儿的喂养,以避免药物影响。
每只眼睛采集了 2~12张图像,用于评估视网膜的状况。使用了 RetCam(Clarity Medical Systems,Pleasanton,CA)设备来拍摄新生儿的视网膜图像,包括每只眼睛的后视(posterior)、颞部(temporal)、上部(superior)、下部(inferior)和鼻部(nasal )的照片。

在采集婴儿视网膜图像时,面临的主要挑战是婴儿的配合不足和注意力持续时间有限。婴儿通常不容易保持安静或固定眼睛,尤其是在长时间的检查过程中。这些问题导致了许多图像质量低下,可能会出现:聚焦问题、对比度不足、运动模糊和光照不均匀等图像问题。为了确保数据集的高质量,根据专家的专业意见,从大量拍摄的图像中,挑选出质量较高的图像。专家还删除了约30张质量较差的图像,以确保数据集中图像质量符合研究需求。

最终,FARFUM-RoP 数据集 包含了 68名患者的 1533 张图像,这些图像将进入下一步的标注过程,由 专家医生对每张图像进行 分类标注。
FARFUM RoP 数据集的示例如 图1 所示。
在这里插入图片描述
图1:FARFUM RoP 数据集的示例图像


5. 数据集

数据集的细节。

  1. 患者姓名匿名化:
    为了保护患者隐私,数据集中 所有患者的真实姓名已被匿名化,使用 “Patientnn” 的编码,其中 nn 是一个从 01 到 68 的编号,代表每个患者。

  2. 该数据库由 68 个压缩的 .rar 文件组成。
    整个数据库由 68个压缩文件(.rar) 组成,每个压缩包文件的名称与患者代码相对应,文件内包含多个 .jpg 格式的图像,每张图像的尺寸为 1200 x 1600 像素。
    每个患者的图像数量在 1到41张之间,平均每个患者约有 23张图像。
    数据集的图像分布情况可通过 图2 查看。


图2:FARFUM RoP 数据集中患者图像的分布。
在这里插入图片描述

此外,还包括两个 Excel文件(XLSX格式),分别提供了患者信息和图像的标注数据。

  1. 文件 Dataset_Detalys.xlsx 包含患者信息,由 68行 4列组成,每行对应一个患者的详细信息。
    这些列分别是:
    • id:患者编号(从Patient01到Patient68)。
    • Patient.BirthWeight:患者的出生体重(单位为克)。
    • Patient.GestationAge:患者的妊娠周数(单位为周)。
    • Patient.Gender:患者的性别。
      图3 显示了数据集中患者妊娠周数的分布情况。

图3:FARFUM RoP 数据集中患者妊娠周数的分布。
在这里插入图片描述

  1. 文件 Dataset_Labels.xlsx 包含图像的标注信息,由 1533 行和 8列组成,每行对应一个图像的标注数据,
    这些列分别是:
    • id:患者编号(从Patient01到Patient68)。
    • image_name:图像文件名。
    • 5列为专家标注:每个标注由 3列组成,分别是:视网膜病变分级(retinopathy grade)、分期(stage)和诊断(diagnostic)。
    • 最后一列为标签(Label),这是由五人医学顾问团队共同确认的集体诊断结果,以数值 1~3 表示:“1” 为正常、“2” 为(Pre-Plus)、“3” 为 (Plus)。

6. 数据记录

本数据集的所有数据记录都可以通过 Figshare Repository(11) 获得,该平台提供了有组织的格式,供研究社区使用。通过 Figshare 平台,研究人员可以访问并使用数据集。

在这里插入图片描述

数据集是结构化的,包括 68名患者,患者编号为 Patient01 至 Patient68。数据集通过两个 Excel文件(XLSX格式) 进行记录。

  1. 数据集详细信息(Dataset_Details.xlsx):该文件用于存储患者的基本信息,包括出生体重(BirthWeight)、妊娠周数(GestationAge)和性别(Gender)。

  2. 基于专家意见的数据集标签(Dataset_Labels.xlsx):该文件包含每位患者的 ROP图像标注,每张图像都经过五位专家(A~E) 的评估并给出分类。

    • 分级(Grade)包括三种状态:“1” 表示正常(Normal),“2” 表示 Pre-Plus,“3” 表示 Plus,“0” 表示未指定(该图像未分级)。
    • 诊断(Diagnostic)包括三个状态:无需治疗(No treatment),需要复查(Revisit),需要治疗(Treatment)。
    • 分期(Stage)表示 ROP 病变的阶段,范围从 1 到 5。如果不确定,则标记为 “?”。
      所有五位专家组成的 医学咨询团队 对所有图像进行了 集体审查,根据他们的判断最终统一给出 “Normal”(1)、“Pre-Plus”(2)或 “Plus”(3) 的 分类标签。最终的 共识标签 记录在该 xlsx 文件的 Label 列中。

7. 技术验证

我们开发了一款专用的标注视网膜图像软件,并提供给了 五位眼科专家 使用。这款软件帮助专家们对图像进行分类标注。这五位专家都是眼科专业的学者,是伊朗大学的知名眼科教授。其中有一位专家具有 15年以上经验,三位专家的经验在 10~15年之间,最后一位专家的经验少于 10年。他们的任务是对图像库中的图像进行标注。通过这支经验丰富的专家团队和专用标注软件,确保了数据集中图像的标注 精准性。

该软件的用户界面如 图4 所示,使专家能够方便地进行图像标注。
在该软件中,图像被分配给专家,并且每张图像会附带 患者的相关信息,例如出生体重。每个患者的图像集包含 1~41张图像(平均 22张)。所有这些图像都被精心整理并准备好供专家标注。
在标注过程中,专家 首先查看一些患者图像,这些图像是从患者的所有图像中随机选择 的。专家只能看到随机选择的图像,并且可以在标注前查看所有这些被选中的图像。因此,标注是针对单张图像进行的,而不是对整个检查过程进行标注。

在对患者图像进行全面观察之后,专家需要从 分级评估、诊断决策和分期确定 这三方面进行 评估:

  1. 分级评估(Grade Assessment):
    专家需要将图像分类为以下三种类型之一:正常(Normal),Plus前期(Pre-Plus),加重型(Plus)。
    这种分类对于了解患者当前的眼部健康状况至关重要。

  2. 诊断决策(Diagnostic Decision):
    专家根据他们对图像的分析,选择以下三种 治疗方案 之一:不需要治疗(No treatment required),建议复查(Revisit for further evaluation),立即治疗(Immediate treatment)。

  3. 分期确定(Stage Determination):
    专家还需要根据 ICROP 标准(12),确定ROP的不同分期,其范围为 1~5。以帮助了解眼部问题的严重程度和进展情况。

这一过程确保了对每张图像的全面评估,利用了具有不同经验的专家的专业知识。
在这里插入图片描述
图4:标签软件的用户界面。
在该软件的帮助下,标注者可以记录对每位患者的病情、诊断、黄斑水肿风险和疾病分期的评估结果。


8. 代码可用性

本研究未使用自定义的代码。


9. 参考文献

  1. Gilbert, C. Retinopathy of prematurity: A global perspective of the epidemics, population of babies at risk and implications for control. Early Human Development. 84(2), 77–82 (2008).
  2. Smith, L. E. & Tasman, W. Retinopathy of prematurity: Current understanding based on new evidence. Archives of Ophthalmology. 129(6), 785–791 (2011).
  3. Fierson W. M. Screening examination of premature infants for retinopathy of prematurity. Pediatrics. 143(3) (2019).
  4. Wallace, D. K. Plus disease in retinopathy of prematurity: An evolving concept. Archives of Ophthalmology 126(7), 963–964 (2008).
  5. Mintz-Hittner, H. A., Kennedy, K. A. & Kennedy, A. Z. Efficacy of Intravitreal Bevacizumab for Stage 3+ Retinopathy of Prematurity. New England Journal of Medicine 364(7), 603–615 (2011).
  6. Holmström, G. Long-term follow-up of children with retinopathy of prematurity. Journal of the American Association for Pediatric Ophthalmology and Strabismus 11(5), 454–459 (2007).
  7. Shafique M. A. et al. Effectiveness of Propranolol in Preventing Severe Retinopathy of Prematurity: A Comprehensive Systematic Review and Meta-Analysis. American Journal of Ophthalmology. Nov. 2023.
  8. Ting, D. S. W. et al. Deep learning in ophthalmology: The technical and clinical considerations. Progress in Retinal and Eye Research 81, 100884 (2021).
  9. Brown, J. M. et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep learning. Ophthalmology 128(7), 1078–1084 (2021).
  10. Agrawal R. et al. HVDROPDB datasets for research in retinopathy of prematurity. Data in Brief. 1–11 (Nov. 2024).
  11. Akbari, M., Pourreza, H. R. & Khalili Pour, E. FARFUM-RoP. figshare https://doi.org/10.6084/m9.figshare.c.6721269.v2 (2023).
  12. International Committee for the Classification of Retinopathy of Prematurity. The international classification of retinopathy of prematurity revisited. Archives of Ophthalmology 123(7), 991–999 (2005).
  13. Attallah, O. DIAROP: automated deep learning-based diagnostic tool for retinopathy of prematurity. Diagnostics 11(11), 2034 (2021).
  14. Zhang, R. et al. Automatic diagnosis for aggressive posterior retinopathy of prematurity via deep attentive convolutional neural network. Expert Systems with Applications (187), 115843.
  15. Lei, B. et al. Automated detection of retinopathy of prematurity by deep attention network. Multimedia Tools and Applications (80), 36341–36360.
  16. Li, X. et al. Deep multiple instance learning with spatial attention for ROP e classification, instance selection and abnormality localization. Paper presented at: 25th International Conference on Pattern Recognition (ICPR) 2020.
  17. Mao, J. et al. Automated diagnosis and quantitative analysis of plus disease in retinopathy of prematurity based on deep convolutional neural networks. Acta ophthalmologica 98(3), e339–e345 (2020).
  18. Vinekar K. Karnataka internet assisted diagnosis of retinopathy of prematurity. KIDROP. Available at: http://kidrop.org/. Accessed December 9, 2023.
  19. Li, P. & Liu, J. Early diagnosis and quantitative analysis of stages in retinopathy of prematurity based on deep convolutional neural networks. Translational Vision Science & Technology. 11(5) (2022).

版权说明:
本文由 youcans@xidian 对论文 FARFUM-RoP, A dataset for computer-aided detection of Retinopathy of Prematurity 进行摘编和翻译。该论文版权属于原文期刊和作者,本译文只供研究学习使用。

youcans@xidian 作品,转载必须标注原文链接:
【医学影像 AI】FARFUM-RoP 早产儿视网膜病变数据集 (https://youcans.blog.csdn.net/article/details/145639105)
Crated:2025-02

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

youcans_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值