【医学影像 AI】人工智能评估血管严重程度(VSS)用于提高 ROP Plus 诊断一致性


0. 论文简介

0.1 基本信息

2024 年,美国 Aaron S Coyner 等在 Ophthalmology 发表论文 “人工智能评估血管严重程度(VSS)用于提高 ROP Plus 诊断一致性(Use of an Artificial Intelligence-Generated Vascular Severity Score Improved Plus Disease Diagnosis in Retinopathy of Prematurity)”。

  • 传统ROP诊断依赖主观定性评估,而 VSS(血管严重程度评分)提供了客观定量工具,减少了诊断变异性和不确定性。
  • 本研究通过多中心临床数据验证,证明 VSS 能显著提升专家对 Plus 病诊断的准确性,使专家诊断更一致,尤其在区分正常、Preplus和Plus病时表现出更高可靠性。
  • 未来或需综合 VSS、病变分区(zone)及周边新生血管范围来制定治疗决策,而非仅依赖Plus病的二元判断[6]。

论文下载: Ophthalmology
引用格式:
Coyner AS, Young BK, Ostmo SR, et al. Use of an Artificial Intelligence-Generated Vascular Severity Score Improved Plus Disease Diagnosis in Retinopathy of Prematurity. Ophthalmology. 2024 Nov;131(11):1290-1296. doi: 10.1016/j.ophtha.2024.06.006.

在这里插入图片描述

收稿日期:2024年3月12日
最终修订:2024年6月4日
接受日期:2024年6月4日
在线发布:2024年6月10日
稿件编号:OPHTHA-D-24-00517


0.2 摘要

  1. 目的:
    评估为临床医生提供基于人工智能(AI)的血管严重程度评分(VSS)是否能提高早产儿视网膜病变(ROP)中"plus"病诊断的一致性。

  2. 设计:
    多阅片者诊断准确性影像研究。

  3. 参与者:
    11名ROP专家,其中 9名具有 10年或以上的临床经验。

  4. 方法:
    作为"ROP影像学与信息学研究"的一部分,在2012年1月至2020年7月期间,使用RetCam(Natus Medical Incorporated)获取早产儿常规ROP筛查中的眼底图像。从所有可用的检查中,选取了110名婴儿的150次眼部检查用于分级。每套图像均由 i-ROP DL系统(Siloam Vision)为每组图像分配了基于 AI 的 VSS。临床医生被要求对每次检查进行"plus"病诊断并估计VSS评分(范围1-9),在基线时进行评估,然后在 1个月后借助 AI生成的VSS再次进行评估。每次眼部检查的参考标准诊断(RSD)均基于3位专家标注和检眼镜诊断。

  5. 主要结果指标:
    与RSD相比,Plus病诊断的平均线性加权κ值;与RSD相比,标签1至9的受试者工作特征曲线下面积(AUC)和精确召回曲线下面积(AUPR)。

  6. 结果:
    当整合基于 AI 的 VSS 后,专家之间的一致性显著提高,从“基本一致”(κ值,0.69 [0.59, 0.75])提升至“几乎完全一致”(κ值,0.81 [0.71, 0.86])。此外,Plus病的鉴别能力显著提高,表现为平均AUC(从0.94 [95%置信区间(CI),0.92-0.96]提高到0.98 [95% CI, 0.96-0.99];差异为0.04 [95% CI, 0.01-0.06])和 AUPR(从0.86 [95% CI, 0.81-0.90]提高到0.95 [95% CI, 0.91-0.97];差异为0.09 [95% CI, 0.03-0.14])的显著提升。

  7. 结论:
    为ROP临床医生提供基于AI的血管严重程度评分,与参考标准诊断(RSD)相比,不仅改善了Plus病的诊断,还提高了连续严重程度标签的准确性。如果在实践中实施,基于AI的VSS可以减少观察者之间的变异性,并标准化ROP婴儿的治疗。

关键词:
人工智能,深度学习,疾病分类,观察者间一致性,早产儿视网膜病变,严重程度评分

缩写与首字母缩略词:
AI (artificial intelligence),人工智能
AUC(area under the receiver operating characteristic curve),受试者工作特征曲线下面积
AUPR(area under the precision-recall curve),精确召回曲线下面积
BW(birthweight),出生体重
CC (correlation coefficient),相关系数
CCOI (Collaborative Community in Ophthalmic Imaging),眼科影像协作社区
CI(confidence interval),置信区间
ETROP(Early Treatment for ROP),早产儿视网膜病变早期治疗研究
GA(gestational age),胎龄
ICROP (International Classification of ROP),早产儿视网膜病变国际分类法
ICROP3 (International Classification of ROP, Third Edition),早产儿视网膜病变国际分类法-第三版
i-ROP (Imaging and Informatics in ROP),早产儿视网膜病变影像学与信息学
i-ROP DL (Imaging and Informatics in ROP deep learning),早产儿视网膜病变深度学习影像学与信息学
ROP (retinopathy of prematurity),早产儿视网膜病变
RSD(reference standard diagnosis),参考标准诊断
SaMD (Software as a Medical Device),医疗设备软件
VSS(vascular severity score),血管严重程度评分


1. 引言

早产儿视网膜病变(ROP, Retinopathy of prematurity)是全球可预防性儿童盲的首要病因[1-3]。尽管由于初级和次级预防的挑战,该病在低收入和中等收入国家发病率最高,但ROP仍是美国儿童致盲的主要原因[4,5]。因此,尽管全球范围内通过改进氧疗监测和调控来加强初级预防至关重要,但次级预防的不一致性仍是重大挑战。存在两个主要难题:(1)全球许多地区(包括美国农村)缺乏足够的眼科医生来筛查所有高危婴儿[6];(2)ROP诊断依赖于对疾病定性特征的主观评估,即使专家对检查或图像中是否存在严重ROP也可能存在分歧。

ROP分类包含三个核心要素:视网膜血管化程度(分区)、异常新生血管程度(分期)以及血管扩张迂曲程度(plus病)。自2003年《早产儿视网膜病变早期治疗研究》(ETROP)发表以来,plus病的出现已成为决定治疗需求的关键临床特征[1,7,8]。

plus病诊断的观察者间变异可能部分源于血管改变本质是连续性的,而临床标签却是离散的——不同医生对分界点的内在判断标准存在差异[1,9-13]。这实质上导致了诊断不足与过度诊断(及治疗),以及循证决策应用的不一致。随着数字化影像的普及,该问题虽被更好认知,但迄今为止仍未确定判定治疗所需血管扩张与迂曲程度的理想解决方案或标准化方法[9-11,13]。近期,国际ROP分类委员会将plus病重新定义为"从无扩张迂直到严重扩张迂曲的连续性视网膜血管改变谱",虽与既往观察一致,却进一步加大了治疗指南的实施难度[1]。

数字化影像技术也为人工智能(AI)在医疗领域的应用开启大门,其潜在应用场景极为广泛。理论上,AI可同时解决ROP护理中的两个关键缺口:通过自主实施延展临床诊断能力,以及通过辅助临床医生(甚至不同经验水平的医生)实现专家级诊断精度来提升诊断质量[14]。然而,使用AI算法普及临床诊断——辅助训练不足的医生做出正确诊断是一回事;而当连专家医师都无法达成共识时,则面临完全不同的挑战[15]。

i-ROP DL系统(Siloam Vision)作为AI模型,最初开发为plus病分类器,后被改进为可输出代表plus病临床谱的血管严重程度评分(VSS)[16,17]。既往研究已证实其多种潜在应用场景,包括自主筛查、纵向监测和严重ROP的风险预测[14,18-24]。本研究旨在评估:相较于参考标准诊断,基于AI的VSS输出能否辅助临床医生更一致、准确地诊断plus病,从而降低实践中的诊断变异性。


2. 结果

本研究采用多中心"ROP影像学与信息学研究"(i-ROP)队列数据,经协调中心(俄勒冈健康与科学大学)及8个北美研究机构(哥伦比亚大学、伊利诺伊大学芝加哥分校、威廉博蒙特医院、洛杉矶儿童医院、西达赛奈医疗中心、迈阿密大学、威尔康奈尔医学中心、墨西哥防盲协会)伦理委员会批准,并遵循《赫尔辛基宣言》原则执行。所有入组婴儿监护人签署书面同意书。


2.1 数据收集与子集构建

i-ROP研究收集了2012年1月至2020年7月间接受常规ROP筛查患者的眼底图像。所有入组婴儿监护人均签署书面同意书,研究未提供任何报酬或激励。每次检查中使用RetCam(Natus)采集每只眼球后极部、鼻侧、颞侧、下方及上方五个区域的视网膜图像。根据国际ROP分类标准,对每只眼进行床旁(单检查者)和基于图像的(3位专家读片)诊断。通过既往发表的方法,结合临床与影像学检查结果形成共识参考标准诊断(RSD)[25]。据此生成二分类标签(正常/预plus病 vs plus病;正常 vs 预plus病/plus病)。3位读片专家一致认为不符合诊断要求的图像被排除。最终从i-ROP主数据集中随机抽取150次眼部检查(110例患者,包含60例正常、60例预plus病和30例plus病的RSD结果)构成研究子集。


2.2 研究流程

该子集中每次检查的5幅图像均上传至基于Shiny for R 4.3.1(R统计计算基金会)构建的定制在线评估平台。招募了11位未参与原始i-ROP研究的临床ROP专家(4位儿科眼科医师与7位视网膜专科医师,其中9位从业>10年)参与研究。通过网页界面评估150次检查并完成两项任务(图1):首先将检查结果分类为正常、预plus病或plus病;其次在获知评分标准后(补充附录见www.aaojournal.org),给出1-9分的血管严重程度评分。1个月后,专家对相同图像重复评估,但此时系统同步显示由i-ROP DL算法根据既往发表方法生成的AI衍生血管严重程度评分[17,26]。


2.3 AI 辅助前后临床诊断效能评估

采用线性加权Cohen’s κ值比较干预前后plus病分类与RSD的总体一致性。κ值判读标准:0.00≤κ<0.20为轻微一致;0.20≤κ<0.40为一般一致;0.40≤κ<0.60为中等一致;0.60≤κ<0.80为高度一致;0.80≤κ<1.00为几乎完全一致。

采用线性加权 Cohen’s κ系数评估 AI 辅助 前后plus病变分类与 RSD 的一致性程度,判定标准如下:
0.00≤κ<0.20 轻微一致
0.20≤κ<0.40 一般一致
0.40≤κ<0.60 中等一致
0.60≤κ<0.80 高度一致
0.80≤κ<1.00 几乎完全一致

进一步通过精确召回曲线下面积(AUPR)与受试者工作特征曲线下面积(AUC),对比分析医师在有无AI建议情况下给出的1-9分血管严重度评分(VSS)与RSD的吻合度。同时考核个体医师VSS评分与专家组多数意见(容许±1分差异)的符合率在AI介入前后的变化情况。


2.4 统计分析

采用Shapiro-Wilk正态性检验确定出生体重(BW)和孕周(GA)呈正态分布,而κ值、AUPR和AUC测量值不符合正态分布。对于BW和GA,使用单因素方差分析比较按plus病诊断分层的均值,事后分析采用Tukey诚实显著性差异检验。对于κ值、AUPR和AUC,通过自助法(n=10 000次重复)估计各指标的均值(95%置信区间[CI])。采用相同方法计算组间差异的均值(95% CI)以判断显著性:若差异值的95% CI不包含0,则认为组间存在显著差异。通过Mann-Whitney U检验比较AI辅助前后专家VSS评分与多数评分(≥1分差异)的平均吻合率。所有检验均为双侧,数值结果以均值(95% CI)报告,显著性定义为P<0.05。


3. 方法

本研究采用早产儿视网膜病变影像与信息学(i-ROP)多中心队列研究的数据开展。研究方案获得协调中心(俄勒冈健康与科学大学)及8个北美研究中心(包含哥伦比亚大学、伊利诺伊大学芝加哥分校、威廉博蒙特医院等)伦理委员会审批,并严格遵循《赫尔辛基宣言》的伦理准则。所有入组婴儿的法定监护人均签署了知情同意书。


3.1 数据收集与样本筛选

2012年1月至2020年7月期间,研究团队收集了接受常规 ROP 筛查患者的眼底影像数据。全部参与者监护人均签署书面同意文件,且未提供任何经济补偿。

每次检查使用RetCam(Natus)为每只眼睛采集 5张视网膜眼底图像,分别覆盖视网膜后极部、鼻侧、颞侧、下侧和上侧区域。

眼部诊断采用完整的国际ROP分类标准,包括床边检查(单一检查者)和基于图像的诊断(3位专家读片)。参考标准诊断(RSD)通过结合临床检查和基于图像的检查结果形成,方法详见文献【25】。基于此创建了二元分类标签:Normal/PrePlus disease vs Plus disease ,以及 Normal vs PrePlus/Plus disease 。

经 3位阅片专家一致判定不符合诊断要求的影像均予以排除。最终从主数据库中随机抽取110例患者(的150次眼部检查(包含60例 Normal、60例 PrePlus 和30例 Plus disease 的 RSD结果)作为子集。


3.2 研究实施方案

该子集中每次检查的5张眼底图像均被上传至使用R语言4.3.1版(R统计计算基金会)Shiny包构建的定制在线评估平台。
研究招募了11位临床ROP专家参与(包括4位小儿眼科医师和7位视网膜专家,其中9位具有10年以上临床经验),这些专家未参与原始i-ROP研究。

如图1 所示,受试医师通过网络界面评估 150次检查并完成两项任务:

  • 首先对检查结果进行分类(Normal、PrePlus 或 Plus disease);
  • 其次在获得评分指导后,给出1-9分的血管严重程度评分(补充附录见www.aaojournal.org)。

一个月后,专家们被要求使用相同图像重复评估任务,但此次评估同时显示由i-ROP DL算法[17,26] 生成的AI血管严重程度评分。


在这里插入图片描述

图1:在线图像评估平台。
专家登录系统对图像集(每组5张轮播图像)进行"plus"病变评估并给出血管严重程度评分(VSS)。
在初始阶段,人工智能(AI)预测的VSS结果不向评估者显示。一个月后,同一批专家被要求对相同图像进行再次评估,但此时AI预测的VSS结果会予以显示。


3.3 人工智能辅助与非辅助条件下的临床诊断性能评估

通过比较加权限 Cohen’s k值评估干预效果,分析 Plus 病变分类与 RSD 的整体一致性。
采用公认标准解释 k 值:0.00≤k<0.20为轻微一致;0.20≤k<0.40为一般一致;0.40≤k<0.60为中等一致;0.60≤k<0.80为高度一致;0.80≤k<1.00为几乎完全一致。

研究还比较了临床医生给出的 1-9分VSS评分与RSD的一致性(分为AI辅助和非辅助两组),采用精确召回曲线下面积(AUPR)和受试者工作特征曲线下面积(AUC)进行评估。进一步比较了个体医生 VSS评分与专家组多数评分的符合率(±1分范围内),分析AI辅助前后的差异。


3.4 统计分析

Shapiro-Wilk 正态性检验显示出生体重(BW)和胎龄(GA)符合正态分布,但 k值、AUPR和AUC测量值不符合。
对于BW和GA,采用单因素方差分析比较不同plus病变诊断分组的均值,事后分析使用Tukey真实显著性差异检验。
对于k值、AUPR和AUC,采用自助法(n=10000)估计指标的均值(95%置信区间[CI])。
通过计算组间均值差异(95%CI)判断显著性:若95%CI不包含0,则认为差异具有统计学意义。使用Mann-Whitney U检验比较AI辅助前后专家VSS评分(±1分范围内)的平均符合率。所有检验均为双侧,数值结果以均值(95%CI)报告,显著性定义为P<0.05。


4. 结果

4.1 构建数据收集与子集构建

总体而言,当按 Plus病变 RSD对婴儿进行分层时,发现BW(P < 0.001)和GA(P < 0.001)存在显著差异(表1)。
对于 BW,正常组与 PrePlus 病变组之间存在统计学显著差异(差值330.0克[95%CI,188.5-471.5克];P < 0.001),正常组与 Plus 病变组之间也存在显著差异(差值439.7克[95%CI,257.0-622.4克];P < 0.001)。
GA也观察到类似结果,正常组与 PrePlus 病变组之间存在差异(差值2.6周[95%CI,1.4-3.7周];P < 0.001),正常组与 Plus 病变组之间也存在差异(差值3.2周[95%CI,1.7-4.6周];P < 0.001)。


表1. 本研究纳入婴儿的临床人口学特征
在这里插入图片描述


4.2 人工智能辅助与非辅助条件下的临床诊断性能评估

在 Plus 病变分类方面,与 Plus 病变RSD的一致性从高度一致(k值0.69[95%CI,0.59-0.75])提高到几乎完全一致(k值0.81[95%CI,0.71-0.86]),显著增加了0.11(95%CI,0.01-0.23;表2)。

图2 显示了每位评估者在有无基于 AI 的 VSS情况下的个体评分,按 Plus 病变标签进行颜色编码,展示了评分范围内诊断的标准化程度。Plus 病变的诊断有明显改善,但 PrePlus 病变标签的诊断频率仍存在持续性差异(即阅片者1 和 2 使用该标签的频率显著低于阅片3-11)。

我们通过两种方式评估临床医生分配 VSS 标签的能力:其标签与 Plus 病变 RSD 的 AUC 和AUPR,以及个体临床医生的 VSS 与多数 VSS 的 ±1分符合率百分比。AUC 从0.94(95% CI,0.92-0.96)提高到 0.98(95%CI,0.96-0.99;差值0.04[95%CI,0.01-0.06]),AUPR 从0.86(95%CI,0.81-0.90)提高到0.95(95%CI,0.91-0.97;差值0.09[95%CI,0.03-0.14])。相比之下,基于 AI 的 VSS 本身的 AUC 和 AUPR 分别为0.99和0.96。

我们还观察到临床 VSS 评分的符合率百分比从无 AI 辅助时的 83.1%提高到有 AI 辅助时的93.3%(图3),增加了10.2%(95%CI,8.3%-12.2%;P < 0.001)。Bland-Altman 图表明,这一增长是通过改善临床医生在整个 VSS 值范围内的一致性实现的,特别是对于 2-8 范围内的 VSS 值(图S4,见 www.aaojournal.org)。


表2. 专家评估表现(基于人工智能血管严重程度评分辅助与无辅助情况对比)
在这里插入图片描述


在这里插入图片描述

图2:各评估者对plus病变判读结果的可视化呈现。
A:无人工智能(AI)血管严重程度评分(VSS)辅助时,专家评估者对 PrePlus 和 PPus病变的诊断均存在显著差异。
B:采用AI辅助VSS后,Plus 病变诊断一致性明显改善,但 PrePlus 病变标签的使用频率仍存在差异(即评估者1和2使用该标签的频率显著低于评估者3-11)。


在这里插入图片描述
图3:展示专家血管严重程度评分(VSS)在有无人工智能(AI)辅助VSS情况下一致性的图表。
每幅图像被绘制两次:使用AI辅助VSS(青色)和不使用AI辅助VSS(红色),采用专家平均VSS评分及±1分范围内达成一致的专家比例。同时拟合了有无AI辅助VSS情况下的二次曲线±标准误差线。


5. 讨论

《早产儿视网膜病变国际分类(第三版)》委员会指出,ROP血管改变呈现连续性谱系特征,这在一定程度上解释了临床医生对 Plus 病变诊断的差异性。本研究评估了AI衍生的血管严重程度评分(VSS)能否通过提供血管病变程度的客观评估来改善 Plus 病变的诊断一致性。研究得出两个关键发现:
(1) 当临床医生获得 AI 辅助 VSS 时,其 Plus 病变分类准确性平均有所提高;
(2) 临床医生能够直接学习使用 1-9 分评分系统,且对 PrePlus 和 Plus 病变均具有较高的诊断准确性。

既往研究表明,AI在糖尿病视网膜病变、年龄相关性黄斑变性和白内障等多种眼科疾病的诊断中已达到与专家相当的准确性,并能提升临床诊断水平[27-30]。在AI医疗软件众多应用场景中,辅助诊断最具临床价值——特别是在 Plus 病变分类等存在显著观察者间变异性的领域。虽然 ROP 诊疗标准中提供了 Plus 病变的典型图像,但专家间及专家自身判读仍存在显著差异[9,13,31]。临床诊断标签的判定受多种因素影响,包括评估者身份、检查方式(直接检眼镜或远程医疗)以及单次或连续检查信息。更复杂的是,Plus 病变诊断标准随时间推移发生变化,这使得如何持续应用20多年前ETROP研究制定的治疗指南成为难题[7,11]。最新版ROP国际分类虽未完全解决该问题,但通过建立更精细的血管改变评估体系为临床评估提供了新框架[1]。Binenbaum等[32]在配套研究中证实,临床医生可不依赖AI,仅基于系列参考图像就能对P1-P9评分达成共识。这与前期研究发现一致——临床医生对"哪幅图像病变更严重?“(或"哪幅图像最接近患者病情?”)的判断具有高度一致性,这为临床推广该评估体系(即使不采用数字成像或AI技术)提供了实践路径[10]。

尽管本研究仅展示了 AI生成VSS的一个应用场景(改善plus病变诊断),但类似临床量表的应用可能具有更广泛的临床价值。**前期研究证实VSS与病变分区、分期、3期病变范围(及总体ROP严重程度)密切相关[17],因此VSS的临床应用为重新评估当代ROP治疗标准奠定了基础。**除考虑近20年 Plus 病变临床评估标准的变化外,当前临床收治的患儿平均胎龄更小、后极部病变比例更高,且一线治疗已从激光光凝转为抗VEGF药物——这种治疗方式的风险收益比可能支持不同于ETROP研究时期的干预时机。这些差异需要通过后续临床研究验证,未来可能需要重新评估VSS与病变分区(zone)、分期(stage)及周边新生血管范围 的相对重要性,而非仅关注Plus病的有或无。

本研究存在若干局限性:首先,参与专家(n=11)和检查样本量(n=150)较小,因此无法充分评估不同临床医生群体(如低年资医师或培训医师)的潜在获益差异[33,34];其次,研究数据仅来自美国患儿,其结论是否适用于其他地区(可能存在表型差异)尚不明确;最后存在两大实施障碍:(1)全球多数ROP检查仍采用非数字化方式,(2)目前尚无获批上市的ROP专用AI算法。尽管如此,本研究结果提示若能克服这些障碍,ROP严重程度诊断一致性有望显著提高。

结论认为,采用更精细的ROP诊断分级量表具有多重临床优势。本研究证实其中一项优势体现在提高plus病变诊断一致性,这可能促进临床治疗阈值的标准化。ROP致盲几乎完全可以预防,而VSS的应用既能减少诊断误差,也可能改善临床预后。更广泛而言,这项研究可能揭示了辅助AI技术在眼科临床诊断中的冰山一角——当前多数疾病分类系统依赖于主观定性评估,而AI技术为实现更客观、定量的诊断提供了可能,最终有望提升患者预后。


6. 参考文献

补充材料见 www.aaojournal.org。

  1. Chiang MF, Quinn GE, Fielder AR, et al. International Classificationof Retinopathy of Prematurity, Third Edition.Ophthalmology. 2021;128(10):e51ee68.
  2. Sabri K, Ells AL, Lee EY, et al. Retinopathy of prematurity: aglobal perspective and recent developments. Pediatrics.2022;150(3):e2021053924.
  3. Nair A, El Ballushi R, Anklesaria BZ, et al. A review on theincidence and related risk factors of retinopathy of prematurityacross various countries. Cureus. 2022;14(11):e32007.
  4. Blencowe H, Lawn JE, Vazquez T, et al. Preterm-associatedvisual impairment and estimates of retinopathy of prematurityat regional and global levels for 2010. Pediatr Res.2013;74(Suppl 1):35e49.
  5. Kim SJ, Port AD, Swan R, et al. Retinopathy of prematurity: areview of risk factors and their clinical significance. SurvOphthalmol. 2018;63(5):618e637.
  6. Siegler NE, Walsh HL, Cavuoto KM. Access to pediatric eyecare by practitioner type, geographic distribution, and USpopulation demographics. JAMA Ophthalmol. 2024;142(5):454e461.
  7. Good WV. Final results of the Early Treatment for Retinopathyof Prematurity (ETROP) randomized trial. Trans Am
    Ophthalmol Soc. 2004;102:233e248. discussion 248-50.8. Multicenter trial of cryotherapy for retinopathy of prematurity.One-year outcomedstructure and function. Cryotherapy forRetinopathy of Prematurity Cooperative Group. Arch Ophthal.1990;108(10):1408e1416.
  8. Cole ED, Park SH, Kim SJ, et al. Variability in plus diseasediagnosis using single and serial images. Ophthalmol Retina.2022;6(12):1122e1129.
  9. Kalpathy-Cramer J, Campbell JP, Erdogmus D, et al. Plusdisease in retinopathy of prematurity: improving diagnosis byranking disease severity and using quantitative image analysis.Ophthalmology. 2016;123(11):2345e2351.
  10. Moleta C, Campbell JP, Kalpathy-Cramer J, et al. Plus diseasein retinopathy of prematurity: diagnostic trends in 2016 versus2007. Am J Ophthalmol. 2017;176:70e76.
  11. Wallace DK, Quinn GE, Freedman SF, Chiang MF. Agreementamong pediatric ophthalmologists in diagnosing plus andpre-plus disease in retinopathy of prematurity. J AAPOS.2008;12(4):352e356.
  12. Campbell JP, Kalpathy-Cramer J, Erdogmus D, et al. Plusdisease in retinopathy of prematurity: a continuous spectrum ofvascular abnormality as a basis of diagnostic variability.Ophthalmology. 2016;123(11):2338e2344.
  13. Coyner AS, Murickan T, Oh MA, et al. Multinational externalvalidation of autonomous retinopathy of prematurityscreening. JAMA Ophthalmol. 2024;142(4):327e335.
  14. De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinicallyapplicable deep learning for diagnosis and referral in retinaldisease. Nat Med. 2018;24(9):1342e1350.
  15. Brown JM, Campbell JP, Beers A, et al. Automated diagnosis ofplus disease in retinopathy of prematurity using deep convolutionalneural networks. JAMA Ophthalmol. 2018;136(7):803e810.
  16. Campbell JP, Kim SJ, Brown JM, et al. Evaluation of a deeplearning-derived quantitative retinopathy of prematurityseverity scale. Ophthalmology. 2021;128(7):1070e1076.
  17. Greenwald MF, Danford ID, Shahrawat M, et al. Evaluation ofartificial intelligence-based telemedicine screening for retinopathyof prematurity. J AAPOS. 2020;24(3):160e162.
  18. Bellsmith KN, Brown J, Kim SJ, et al. Aggressive posteriorretinopathy of prematurity: clinical and quantitative Imagingfeatures in a large North American cohort. Ophthalmology.2020;127(8):1105e1112.
  19. Taylor S, Brown JM, Gupta K, et al. Monitoring diseaseprogression with a quantitative severity scale for retinopathy ofprematurity using deep learning. JAMA Ophthalmol.2019;137(9):1022.
  20. Campbell JP, Singh P, Redd TK, et al. Applications of artificialintelligence for retinopathy of prematurity screening. Pediatrics.2021;147(3):e2020016618.
  21. Coyner AS, Chen JS, Singh P, et al. Single-examination riskprediction of severe retinopathy of prematurity. Pediatrics.2021;148(6):e2021051772.
  22. Coyner AS, Oh MA, Shah PK, et al. External validation of aretinopathy of prematurity screening model using artificialintelligence in 3 low- and middle-income populations. JAMAOphthalmol. 2022;140(8):791e798.
  23. Cole E, Valikodath NG, Al-Khaled T, et al. Evaluation of anartificial intelligence system for retinopathy of prematurityscreening in Nepal and Mongolia. Ophthalmol Sci. 2022;2(4):100165.
  24. Ryan MC, Ostmo S, Jonas K, et al. Development and evaluationof reference standards for image-based telemedicinediagnosis and clinical research studies in ophthalmology.AMIA Annu Symp Proc. 2014:1902e1910.
  25. Campbell JP, Chiang MF, Chen JS, et al. Artificial intelligencefor retinopathy of prematurity: validation of a vascular severityscale against international expert diagnosis. Ophthalmology.2022;129(7):e69ee76.
  26. Keenan TDL, Chen Q, AgrónE, et al. DeepLensNet: deep learningautomated diagnosis and quantitative classification of cataract typeand severity. Ophthalmology. 2022;129(5):571e584.
  27. Waldstein SM, Vogl WD, Bogunovic H, et al. Characterizationof drusen and hyperreflective foci as biomarkers for diseaseprogression in age-related macular degeneration usingartificial intelligence in optical coherence tomography. JAMAOphthalmol. 2020;138(7):740.
  28. Gulshan V, Peng L, Coram M, et al. Development and validationof a deep learning algorithm for detection of diabetic retinopathyin retinal fundus photographs. JAMA. 2016;316(22):2402.
  29. Crincoli E, Servillo A, Catania F, et al. Artificial intelligence’srole in differentiating the origin for subretinal bleeding inpathologic myopia. Retina. 2023;43(11):1881e1889.
  30. Biten H, Redd TK, Moleta C, et al. Diagnostic accuracy ofophthalmoscopy vs telemedicine in examinations for retinopathyof prematurity. JAMA Ophthalmol. 2018;136(5):498e504.
  31. Binenbaum G, Stahl A, Coyner AS, et al. P-score: a referenceimage-based clinical grading scale for vascular change inretinopathy of prematurity. Ophthalmology. 2024 May;23.https://doi.org/10.1016/j.ophtha.2024.05.019. S0161-6420(24)00314-2 Online ahead of print.
  32. Braverman RS, Enzenauer RW. Socioeconomics of retinopathyof prematurity care in the United States. Am Orthopt J.2013;63:92e96. https://doi.org/10.3368/aoj.63.1.92.
  33. Bhatia SK, Siegel L, Braverman R, et al. Socioeconomics ofretinopathy of prematurity screening and treatment in theUnited States. J AAPOS. 2021;25(4):227.e1e227.e6.

6. 其它

利益冲突声明
Campbell博士和Kalpathy-Cramer博士曾接受基因泰克公司(美国加利福尼亚州旧金山)的研究资助。i-ROP DL系统已由俄勒冈健康与科学大学和马萨诸塞州总医院授权给Siloam Vision公司(美国马萨诸塞州韦尔斯利),未来可能为Chan博士、Campbell博士、Coyner博士和Kalpathy-Cramer博士带来专利使用费。Chan博士是爱尔康公司(美国德克萨斯州沃斯堡)的顾问。Chiang博士曾担任诺华公司(瑞士巴塞尔)顾问,并曾持有InTeleretina有限责任公司(美国夏威夷州檀香山)的股权。Campbell博士、Chan博士和Kalpathy-Cramer博士均为Siloam Vision公司的股权持有者。Coyner博士担任Siloam Vision公司顾问。Kalpathy-Cramer博士曾接受通用电气(拨款至所属机构)的科研基金资助。

利益披露
所有作者均已填写并提交ICMJE利益披露表格。具体披露如下:
A.S.C.:顾问(Siloam Vision公司),专利使用费(Siloam Vision公司)
R.V.P.C.:顾问(爱尔康公司);专利使用费及股权持有(Siloam Vision公司)
M.F.C.:顾问(诺华公司);股权持有(InTeleretina有限责任公司)
J.K.-C.:研究资助(基因泰克公司、通用电气);专利使用费及股权持有(Siloam Vision公司)
J.P.C.:研究资助(基因泰克公司);专利使用费及股权持有(Siloam Vision公司)
i-ROP DL系统已由俄勒冈健康与科学大学及马萨诸塞州总医院授权予Siloam Vision公司。

资助声明
本研究获以下机构资助:
美国国立卫生研究院(马里兰州贝塞斯达市;项目编号:R01 EY019474、R01 EY031331、R21 EY031883、P30 EY010572)
防盲研究基金会(美国纽约州纽约市;无限制科室经费及职业发展奖[J.P.C.])
Malcolm Marquis创新基金
资助机构未参与研究设计或实施。


版权说明:
本文由 youcans@xidian 对论文 Use of an Artificial Intelligence-Generated Vascular Severity Score Improved Plus Disease Diagnosis in Retinopathy of Prematurity 进行摘编和翻译。该论文版权属于原文期刊和作者,本译文只供研究学习使用。

youcans@xidian 作品,转载必须标注原文链接:
【医学影像 AI】人工智能评价血管严重程度用于 ROP Plus 诊断(https://youcans.blog.csdn.net/article/details/146348551)
Crated:2025-04

### 回答1: Armbian是一种针对ARM架构的开源操作系统,宝塔是一款非常方便的服务器管理面板。在Armbian系统上安装宝塔可以帮助用户更轻松地管理服务器。 首先,我们需要根据所使用的硬件平台选择合适的Armbian镜像文件进行系统安装。可以通过Armbian官方网站下载相应版本的镜像文件。 然后,将下载好的Armbian镜像文件烧录到SD卡中,可以使用工具如Etcher进行操作。将烧录好的SD卡插入需要安装Armbian系统的设备。 接下来,将设备接通电源,启动设备并通过串口或者HDMI显示器等方式进入到Armbian系统。根据提示完成基本的系统设置,包括设置用户名、密码等。 打开终端,在命令行中输入以下命令进行更新系统: ``` sudo apt update sudo apt upgrade ``` 然后,我们需要安装宝塔面板的依赖库。在终端中输入以下命令: ``` wget -O install.sh http://download.bt.cn/install/install-ubuntu_6.0.sh && sudo bash install.sh ``` 执行完上述命令后,会自动下载并安装宝塔面板安装过程可能需要一段时间,请耐心等待。 安装完成后,可以通过浏览器访问服务器的IP地址,进入到宝塔面板的登录界面。输入之前设置的用户名和密码,即可成功登录。 在宝塔面板中,用户可以进行一些服务器管理操作,包括添加网站、配置FTP服务器、安装数据库等等。通过宝塔面板,可以更加直观和方便地管理Armbian系统。 需要注意的是,由于Armbian系统是一个开源社区项目,安装宝塔面板可能会遇到一些兼容性或者稳定性的问题。如果在安装或使用过程中遇到问题,可以参考Armbian官方论坛或宝塔官方社区寻求帮助。 ### 回答2: Armbian系统是一款基于Ubuntu/Debian的开源操作系统,主要用于单板计算机,如树莓派和橙派等。宝塔面板是一款简单易用的Web服务器管理面板工具,能够提供一站式的服务器管理和在线应用部署。 要在Armbian系统上安装宝塔面板,需要按照以下步骤进行操作: 1. 登录到你的Armbian系统,并以root用户身份运行终端。 2. 首先,需要确保系统中已经安装了必要的依赖软件,包括curl和wget。可以使用以下命令来安装: ``` apt-get install curl wget -y ``` 3. 安装宝塔面板安装脚本。可以使用curl命令来下载安装脚本,并运行脚本进行安装: ``` curl -sSO http://download.bt.cn/install/install-ubuntu_6.0.sh && bash install-ubuntu_6.0.sh ``` 注意:安装过程可能需要较长时间,请耐心等待。 4. 安装完成后,会显示一个管理员登录地址和用户名/密码信息。可以通过访问该地址,在浏览器中登录宝塔面板进行管理。 5. 在登录宝塔面板后,可以进行一系列的服务器管理操作,包括网站创建、数据库配置、SSL证书安装等。 总结:通过以上步骤,我们可以在Armbian系统上成功安装宝塔面板,并且可以使用它来轻松管理和部署各种Web应用程序。 ### 回答3: 要在Armbian系统上安装宝塔面板,您可以按照以下步骤进行操作: 1. 首先,使用SSH(或其他远程连接工具)登录到您的Armbian系统。 2. 确保您的系统已经更新到最新版本。您可以使用以下命令进行系统更新: ``` sudo apt update sudo apt upgrade ``` 3. 下载宝塔面板安装脚本。您可以使用以下命令下载安装脚本: ``` wget -O install.sh http://download.bt.cn/install/install_6.0.sh ``` 4. 运行安装脚本。使用以下命令运行安装脚本: ``` sudo bash install.sh ``` 安装过程可能需要一些时间,请耐心等待。 5. 安装完成后,您可以通过浏览器访问http://服务器IP地址:8888登录宝塔面板,其中服务器IP地址是您的Armbian系统的IP地址。 6.首次登录系统会要求您设置管理员用户名和密码。请按照提示进行设置。 7. 登录成功后,您就可以使用宝塔面板管理您的Armbian系统了。宝塔面板提供了丰富的功能和工具,包括网站管理、数据库管理等。 请注意,安装宝塔面板可能会对系统进行一些配置更改和安装依赖项,因此请确保在执行此操作之前备份重要数据,以防发生意外情况。此外,宝塔面板是一个强大的工具,但也需要一定的系统资源,特别是在资源受限的设备上,使用时请注意系统的负载情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

youcans_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值