11.无重复字符的最长子串

在这里插入图片描述

方法一:滑动窗口 + unordered_set

思路:用一个集合维护当前窗口([left, i])内的字符,当遇到重复时不断收缩左边界。

class Solution {
public:
    int lengthOfLongestSubstring(string s) {
        unordered_set<char> lookup;
        int left = 0, maxLen = 0;
        
        for (int i = 0; i < (int)s.size(); ++i) {
            // 如果 s[i] 在窗口内已存在,就不断删掉 left 指向的字符并左移
            while (lookup.count(s[i])) {
                lookup.erase(s[left]);
                ++left;
            }
            // 窗口此时合法,计算长度(包含 s[i])
            maxLen = max(maxLen, i - left + 1);
            // 将 s[i] 纳入窗口
            lookup.insert(s[i]);
        }
        
        return maxLen;
    }
};
  • 优点:逻辑直观,代码简单易懂。
  • 缺点while 循环中每次只移一个字符,在最坏情况下会执行较多次 erase

方法二:滑动窗口 + unordered_map 记录字符最新下标

思路:利用哈希表直接记录每个字符“上一次出现的位置”,当发现重复时,快速跳过整个区间,无需一个个删除。

class Solution {
public:
    int lengthOfLongestSubstring(string s) {
        unordered_map<char, int> lastPos; // 记录字符上次出现的下标
        int maxLen = 0, left = 0;
        
        for (int i = 0; i < (int)s.size(); ++i) {
            char c = s[i];
            // 如果 c 在 [left, i-1] 范围内出现过,就把 left 直接跳到 上次出现位置 + 1
            if (lastPos.count(c) && lastPos[c] >= left) {
                left = lastPos[c] + 1;
            }
            // 更新 c 的最新下标
            lastPos[c] = i;
            // 计算当前窗口长度
            maxLen = max(maxLen, i - left + 1);
        }
        
        return maxLen;
    }
};
  • 优点:每个字符只处理一次,left 跳动效率更高;
  • 缺点:需要额外存储每个字符的下标(空间 O(k)),不过字符集一般较小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值