有道开源RAG引擎 QAnything 版本更新啦

图片

https://github.com/netease-youdao/QAnything

近日,我们将我们的RAG(基于检索增强的生成,Retrieval Augmented Generation)引擎QAnything开源了,用户可以传入doc, pdf, 图片,ppt, excel 等各种类型的文档,就可以基于这些文档问答,像 "chatgpt" 一样的体验。本次开源包括了embedding, rerank, LLM,向量数据库等所有必要的模型和系统模块,用户可以一键下载,纯本地搭建大模型问答系统,马上开始使用。

图片

(QAnything 引擎系统架构图)

QAnything 受到广大开发者的密切关注,开源近两周,star迅速涨到接近2000,昨日QAnything进入到了github的trending版。

图片

   

图片

QAnything开源后,广大用户给我们提了很多的意见。我们研发人员日夜不停的回答用户问题,并紧锣密鼓的改代码。昨日,我们发布了一个Release更新:

QAnything 版本 V1.1.0,让安装过程更简单,体验更流畅。

https://github.com/netease-youdao/QAnything/releases/tag/v1.1.0

Features:

- 安装过程更简单

  - 优化启动流程,支持一键启动:执行bash run.sh即可

  - 优化安装过程的交互,提示信息更友好

- 体验更流畅

  - 优化前端启动速度,秒打开。感谢网友@jsoncode的贡献!

- 部署选择更多

  - 优化显存占用,支持多GPU部署,目前支持单卡或双卡部署,双卡两张卡显存占用分别为11G,5G

- 其他优化

  - 向量库占用空间减少到原来的1/3 

  - 优化xlsx,html切分chunk时size过大导致的解析失败

  - 优化知识库内只有单文档时回答的效果

  - 优化pdf解析效果,pdf解析速度

  - 提供原始未修改DockerFile

QAnything还在不断迭代升级中,欢迎大家下载使用并提供宝贵反馈!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值