Java轻松搞定leetcode前100系列之41. 缺失的第一个正数

题目描述:

给你一个未排序的整数数组,请你找出其中没有出现的最小的正整数。

 

示例 1:

输入: [1,2,0]
输出: 3


示例 2:

输入: [3,4,-1,1]
输出: 2


示例 3:

输入: [7,8,9,11,12]
输出: 1

前言
如果本题没有额外的时空复杂度要求,那么就很容易实现:

我们可以将数组所有的数放入哈希表,随后从 1 开始依次枚举正整数,并判断其是否在哈希表中;

我们可以从 1 开始依次枚举正整数,并遍历数组,判断其是否在数组中。

如果数组的长度为 N,那么第一种做法的时间复杂度为O(N),空间复杂度为 O(N);第二种做法的时间复杂度为 O(N^2),空间复杂度为 O(1)。但它们都不满足题目的要求:时间复杂度为 O(N),空间复杂度为O(1)。

「真正」满足此要求的算法是不存在的。但是我们可以退而求其次:利用给定数组中的空间来存储一些状态。也就是说,如果题目给定的数组是不可修改的,那么就不存在满足时空复杂度要求的算法;但如果我们可以修改给定的数组,那么是存在满足要求的算法的。

对于「前言」中提到的第一种做法:

我们可以将数组所有的数放入哈希表,随后从 1 开始依次枚举正整数,并判断其是否在哈希表中。

仔细想一想,我们为什么要使用哈希表?这是因为哈希表是一个可以支持快速查找的数据结构:给定一个元素,我们可以在 O(1) 的时间查找该元素是否在哈希表中。因此,我们可以考虑将给定的数组设计成哈希表的「替代产品」。

实际上,对于一个长度为 N 的数组,其中没有出现的最小正整数只能在 [1,N+1] 中。这是因为如果 [1,N] 都出现了,那么答案是 N+1,否则答案是 [1,N] 中没有出现的最小正整数。这样一来,我们将所有在 [1,N] 范围内的数放入哈希表,也可以得到最终的答案。而给定的数组恰好长度为 N,这让我们有了一种将数组设计成哈希表的思路:

我们对数组进行遍历,对于遍历到的数 x,如果它在 [1,N] 的范围内,那么就将数组中的第 x−1 个位置(注意:数组下标从 0 开始)打上「标记」。

在遍历结束之后,如果所有的位置都被打上了标记,那么答案是 N+1,否则答案是最小的没有打上标记的位置加 1。

那么如何设计这个「标记」呢?由于数组中的数没有任何限制,因此这并不是一件容易的事情。但我们可以继续利用上面的提到的性质:由于我们只在意 [1,N] 中的数,因此我们可以先对数组进行遍历,把不在 [1,N] 范围内的数修改成任意一个大于 N 的数(例如 N+1)。这样一来,数组中的所有数就都是正数了,因此我们就可以将「标记」表示为「负号」。算法的流程如下:

1)我们将数组中所有小于等于 0 的数修改为 N+1;

2)我们遍历数组中的每一个数 xx,它可能已经被打了标记,因此原本对应的数为 ∣x∣,其中 ∣∣ 为绝对值符号。如果 ∣x∣∈[1,N],那么我们给数组中的第 ∣x∣−1 个位置的数添加一个负号。注意如果它已经有负号,不需要重复添加;

3)在遍历完成之后,如果数组中的每一个数都是负数,那么答案是 N+1,否则答案是第一个正数的位置加 1。

代码如下:

 public int firstMissingPositive(int[] nums) {
        int n=nums.length;
        for (int i = 0; i < n; i++) {
            if (nums[i]<=0){
                nums[i]=n+1;
            }
        }
        for (int i = 0; i < n; i++) {
            int num = Math.abs(nums[i]);
            if (num<=n){
             nums[num-1]=-Math.abs(nums[num-1]);
            }
        }
        for (int i = 0; i < n; i++) {
            if (nums[i]>0){
                return i+1;
            }
        }
        return n+1;
    }

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值