DailyChallenge
41. 缺失的第一个正数
20200627
难度:困难
题目描述
给你一个未排序的整数数组,请你找出其中没有出现的最小的正整数。
示例 1:
输入: [1,2,0]
输出: 3
示例 2:
输入: [3,4,-1,1]
输出: 2
示例 3:
输入: [7,8,9,11,12]
输出: 1
提示:
你的算法的时间复杂度应为O(n),并且只能使用常数级别的额外空间。
Solution
首先想到的是哈希表,但是不满足空间要求。
如果数组中有≤0的数和>n的数,那么1到n中一定会有数字缺失。所以缺失的第一个正数在[1,n+1]
范围内。
原地哈希,也就是将数组视为哈希:数组索引代表哈希表的key,在对应元素上添加正负号表示这个数字是否出现。例如:出现了1就把第1位数字标为负数,2没有出现就把第二位数字标为正数。最后返回第一个正数的位置。
class Solution {
public int firstMissingPositive(int[] nums) {
int n = nums.length;
//算1出现的次数
int contains = 0;
for(int i = 0; i < n; i++){
if(nums[i] == 1){
contains ++;
break;
}
}
// 如果1没有出现过,则最小正整数是1
if(contains == 0){
return 1;
}
//用1替换负数,0,和大于n的数
for(int i = 0; i < n; i++){
if((nums[i] <= 0) || (nums[i] > n)){
nums[i] = 1;
}
}
// 使用索引和数字符号作为检查器
// 如果 nums[1-1](第一个数) 是负数 表示在数组中出现了数字 `1`
// 如果 nums[2-1](第二个数) 是正数 表示数字 2 没有出现。
for(int i = 0; i < n; i++){
int a = Math.abs(nums[i]);
nums[a-1] = -Math.abs(nums[a-1]);
}
// 现在第一个正数的下标,就是第一个缺失的数
for(int i = 0; i < n; i++){
if(nums[i] > 0){
return i+1;
}
}
return n+1;
}
}
- 哈希表
我们将数组中所有小于等于 0 的数修改为 N+1;
我们遍历数组中的每一个数 x,它可能已经被打了标记,因此原本对应的数为 ∣x∣,其中∣∣ 为绝对值符号。如果 ∣ x ∣ ∈ [ 1 , N ] ∣ x ∣ ∈ [ 1 , N ] |x| \in [1, N]∣x∣∈[1,N] ∣x∣∈[1,N]∣x∣∈[1,N],那么我们给数组中的第 ∣ x ∣ − 1 ∣x∣−1 ∣x∣−1 个位置的数添加一个负号。注意如果它已经有负号,不需要重复添加;
在遍历完成之后,如果数组中的每一个数都是负数,那么答案是 N+1,否则答案是第一个正数的位置加 1。
class Solution {
public int firstMissingPositive(int[] nums) {
int n = nums.length;
for (int i = 0; i < n; ++i) {
if (nums[i] <= 0) {
nums[i] = n + 1;
}
}
for (int i = 0; i < n; ++i) {
int num = Math.abs(nums[i]);
if (num <= n) {
nums[num - 1] = -Math.abs(nums[num - 1]);
}
}
for (int i = 0; i < n; ++i) {
if (nums[i] > 0) {
return i + 1;
}
}
return n + 1;
}
}
- 置换
如果数组中包含 x ∈ [ 1 , N ] x \in [1, N] x∈[1,N],那么恢复后,数组的第 x−1 个元素为 x。
在恢复后,数组应当有 [1, 2, …, N] 的形式,但其中有若干个位置上的数是错误的,每一个错误的位置就代表了一个缺失的正数。以题目中的示例二 [3, 4, -1, 1] 为例,恢复后的数组应当为 [1, -1, 3, 4],我们就可以知道缺失的数为 2。
class Solution {
public int firstMissingPositive(int[] nums) {
int n = nums.length;
for (int i = 0; i < n; ++i) {
while (nums[i] > 0 && nums[i] <= n && nums[nums[i] - 1] != nums[i]) {
int temp = nums[nums[i] - 1];
nums[nums[i] - 1] = nums[i];
nums[i] = temp;
}
}
for (int i = 0; i < n; ++i) {
if (nums[i] != i + 1) {
return i + 1;
}
}
return n + 1;
}
}
我的公众号:GitKid
暂时每日分享LeetCode,我在不断学习的过程中,公众号也在不断充实,欢迎大家扫码关注。
TODO:《剑指offer》系列