给定一个非空二叉树,返回其最大路径和。
路径为一条从树中任意节点出发,达到任意节点的序列。该路径至少包含一个节点,且不一定经过根节点。
示例 1:
示例 2:
考虑递归的思想,传参为根节点,分别从它的左右子节点中递归求出最长路径,最终求得该根节点的最长路径。
由于最长路径不一定经过根节点,所以递归调用的过程中,需要记录(左-根-右)结构(该路径我们记为 新路径,反之,按照子节点逐级往根节点走的路径为旧路径)的路径长度,并更新最长路径的数值,但递归返回的结果为(根-最长路径子节点)的值,以便按照该路径继续向上寻找最长路径。由此,得出递归函数max_gain(root)中需要的几个参数:
1、最长路径 max_sum,并初始为极小值(float(‘-inf’))
2、边界:如果节点为空,则最大路径为0(传入根节点为空,或者递归至叶子节点的情况);
对根节点的左右子节点递归调用max_gain(root),计算相应的最大路径长度:
left_gain = max(max_gain(root.left),0)
right_gain = max(max_gain(root.right),0)
( 这里选择和0比较的原因是:如果子节点小于0,则最长路径将去除该子节点
比如:根10,左-5,右-2:子节点对最长路径的贡献率为0,所以最长路径只计入根节点的数值)
新路径的长度:new_path = root.value + left_gain + right_gain,并更新MAX_SUM
递归返回到当前根节点的一条最长路径为 ret = root.value + max(left_gain,right_gain)
树的节点结构定义:TreeNode
class TreeNode(object):
def __init__(self,x):
self.value = x
self.left = None
self.right = None
max_gain函数实现:
def max_gain(root):
global max_sum
if not root:
return 0
left_gain = max(max_gain(root.left),0)
right_gain = max(max_gain(root.right),0)
new_path = root.value + left_gain + right_gain
max_sum = max(max_sum, new_path)
return root.value + max(left_gain,right_gain)
建树:
。
主函数:
if __name__ == '__main__':
max_sum = float('-inf')
#建树
max_gain(root)
print(max_sum)