- 博客(8)
- 收藏
- 关注
原创 yolov5实例分割new_segments = np.array(new_segments)[i]报错
将segment\augmentations.py中的。
2025-06-05 21:12:13
83
原创 depth-anythingv2使用lora进行绝对深度微调
用官方的代码进行绝对深度微调,官方微调的是编码器这块,我这边可能是数据集小了,效果并不理想。但不微调直接用原模型跑出的相对深度图效果还是很好的,按理说模型应当是有微调出一个好的绝对深度图的潜力,所以就考虑用lora微调一下解码器这块。又由于depth-anything-v2的模型结构是编码器Dinov2提取特征,输出四个特征图,四个特征图再各经过一个1*1的project卷积层到达dpt解码器处。test-img就选取一张训练集外的图片进行测试,local-rank是lora的秩。
2025-06-03 21:26:46
390
原创 depth-anythingv2用自己的数据集做绝对深度微调尝试
数据集就按照正常的彩色图和深度图(单通道)来,train.txt和val.txt中写入自己的数据集图片(彩色图路径 深度图路径),分别放在metric_depth/dataset/splits/vkitti2和metric_depth/dataset/splits/kitti中,如图所示。我这里训练完成后图像有棋盘格状伪影,查阅相关资料是ConvTranspose2d的原因,在dpt.py中将其替换。按照官方的metric_depth文档进行微调。简单尝试了一下,仅作一个参考。训练好之后测试指令为。
2025-05-30 19:31:46
187
原创 libtorch模型加密与解密
加密与解密程序如下,运行一次就是加密,加密后的模型使用相同密钥再运行一次就是解密。利用两次异或等于自身进行模型加密与解密。
2025-05-30 19:22:47
137
原创 yolov5继续训练时PermissionError: [Errno 13] Permission denied: ‘.‘报错解决
调试可得报错位置在断点这一句,就是last没加载成功。last是由last=Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())得到,opt.resume就是train.py里面我们给传的参,只要传的参改成last.pt的具体位置就行。
2025-05-03 16:49:20
258
原创 室外大视野双目相机深度值缺失问题解决
为了把鹤管头对准油罐车的口,做了一套双目相机,用yolo识别鹤管头,再用深度图看管头和孔之间的距离,然后再一点点随动地移动鹤管把鹤管头和油罐车的口对准。他们认为这是双目相机标定的问题,因为双目相机基线标定的不准,确实也会导致双目图像匹配出现问题,导致计算得到的深度值错误,出现深度值缺失这种情况。(这张图是截取的管头那儿深度值缺失的时候的图,和上面那张彩色图不是同时拍的。当时是只要管子一动,可能原来管子深度值缺失的地方好了,其他地方又会出现深度值缺失,只是他们只需要管头的深度信息,所以比较关注管头这儿。
2025-03-04 13:54:38
358
原创 轮胎剪切散斑干涉图正余弦滤波+最小二乘解包裹程序 C++
正余弦滤波滤除散斑噪声,最小二乘解包裹将原始的包裹相位图限制在(-pi,pi)的值域展开为真实连续的相位值。最终展开得到的相位值与离面位移梯度值成正比(具体比例与设备参数相关),离面位移值则为离面位移梯度值在剪切方向的积分。正余弦滤波滤除散斑噪声图(20次循环)原图(轮胎气泡缺陷)
2025-02-12 17:58:38
163
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人