让我们定义 dn 为:dn = pn+1 - pn,其中 pi 是第i个素数。显然有 d1=1 且对于n>1有 dn 是偶数。“素数对猜想”认为“存在无穷多对相邻且差为2的素数”。
现给定任意正整数N (< 105),请计算不超过N的满足猜想的素数对的个数。
输入格式:每个测试输入包含1个测试用例,给出正整数N。
输出格式:每个测试用例的输出占一行,不超过N的满足猜想的素数对的个数。
输入样例:
20
输出样例:
4
#include <iostream>
#include <stdio.h>
#include <string>
#include <string.h>
#include <time.h>
#include <cmath>
using namespace std;
bool checkPrime(int n);
int main()
{
int m = 0, sum = 0;
cin >> m;
for(int i = 2; i <= m - 2; i++)
{
if( checkPrime(i) && checkPrime(i + 2))
{
sum += 1;
}
}
cout << sum;
return 0;
}
bool checkPrime(int n)
{
int i = 2;
for(; i < sqrt(n); i++)
{
if(n % i == 0)
{
break;
}
}
if(i > sqrt(n))
{
return 1;
}
else
{
return 0;
}
}