很多产品经理转型AI第一步就是要学习到数据标注。不管是图像识别还是大模型,都来自于数据标注。
而现在有了大模型之后,我们也可以用其来帮忙做数据标注,大大提升效率。将其原有的步骤用大模型来完成。
大模型可以做的数据标注类型
文章分类(Text Classification)
对成千上万篇文章,将它们快速分类。利用分类语句在大模型里能够自动识别文章的主题,并将其归类到相应的类别中。
文本匹配 & 语义向量(Text Matching)
判断两段文本是否相似变得尤为重要。文本匹配技术可以帮助我们快速识别出内容相似或重复的文本,而语义向量则进一步确保了这种匹配的准确性。
情感分析(Sentiment Analysis)
无论是客户反馈、社交媒体帖子还是商品评价,情感分析都能帮助我们理解背后的情感倾向。这项技术能够识别出文本中的情感色彩,是正面的、负面的还是中性的。
文档处理(Document Analysis)
面对堆积如山的文档,文档处理技术可以帮助我们快速生成摘要、提炼关键信息甚至进行翻译。这大大提升了我们的工作效率。
信息提取(Information Extraction)
在大量的文本数据中,信息提取技术能够识别和抽取关键内容,比如人名、地点、组织等。这对于数据分析和知识管理来说是非常有价值的。
图像分类(Images Classification)
图像分类技术为图像世界带来了秩序。它能够识别图像中的对象,并将其归类到相应的类别中。
图像描述(Image Caption)
图像描述技术能够为图片添加描述或文本标题,
文生图(Text-to-Image)
基于文本描述生成图像,它能够将文字描述转化为视觉图像
数据标注用Jason数据进行批量
那么,如何高效地进行数据标注呢?
答案是批量处理。通过提交JSON文件的方式,我们可以一次性批量请求标注,每个文件可以包含多达5万条数据。而标注标准则可以通过不断迭代优化的prompt engineer来实现。
大模型标注,让产品经理转型AI更容易
相较于以前还要用数据标注平台,进行手动标注到半自动化;大模型可以减少手动动作,并且快速积累数据到半自动化训练。
这种方法可以大幅减少标注成本,人工只需进行最后的校验工作。这样,我们就可以将更多的精力投入到AI系统的开发和优化中。
首先要整理单个数据标注的模型语句
例如大模型的情感提取格式:
你是一个意图分类器,任务是:对以下用户评论进行情感分类和特定问题标签标注,只输出结果输入是:"订单处理速度太慢,等了很久才发货。输出格式:
“分类标签”
“特定问题标注”
大模型的关键内容提取格式
你是一个命名体识别器,任务是:从给定文本中抽取出人名、地名、机构名等实体信息,只输出结果。输入是:"前OpenAl董事会成员Helen Toner表示,董事会"解雇的Altman目标是加强OpenA!”,但拒绝说明头何解雇了Altman 。
输出格式:
“实体个数"
“实体名”:
最后一步将数据上传对应格式,批量跑
通过提交json文件的方式一次性批量请求标注就OK了(一个json文件可以提交5万条),标注标准则可以直接通过prompt engineer的方式来不断迭代优化。
如何转行/入门AI产品经理 ?
🤔越来越多的人开始转行AI产品经理,毕竟大行情不是太好,对于刚毕业的研究生,想转行的互联网人,AI产品经理,确实是一个不错的方向,我在大厂做了多年的AI产品经理,还是想给大家一些经验和方向⏩
🔥AIGC在行业大火,AI产品经理到底要学哪些内容,和算法工程师有哪些区别,转行AI产品经理要学哪些东西,以下是整个学习思路和方向👇
1️⃣AI产品经理全局学习
2️⃣python系统学习
3️⃣机器学习&深度学习
4️⃣热门AI产品竞品分析
5️⃣AI产品设计学习
6️⃣AI产品0-1实操项目经验
7️⃣AI产品求职&面试
💎以上7点,看起来简单,内部内容其实很多,每一个篇章,展开都有夯实且丰富的内容,需要深度学习。
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/1b6493180825479993dfa86a28626c9d.jpeg#pic_center)👉AI产品经理大模型视频和书籍PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉获取方式:
😝文章篇幅有限,详细资料有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓