2024年中国大模型行业应用优秀案例白皮书

2024年中国大模型行业应用优秀案例白皮书

一、报告概述

1.1背景

人工智能技术发展下,AI大模型在各行业应用广泛。企业用户对大模型专业性、安全性等要求更高,源于复杂业务场景和低容错需求。本白皮书旨在帮助厂商及用户了解大模型行业应用情况、厂商表现及优秀案例。

1.2案例分布

涵盖头部AI云厂商、AI创业企业、运营商云与部分企业机构自研四类厂商,涉及金融、能源等十大行业。优秀案例考量大模型产品技术、服务能力与行业经验。

二、AI大模型行业应用发展背景

2.1各行业积极推进应用

各行业企业为响应政策、应对变革、实现智能升级,积极探索AI大模型在业务场景中的应用,对其精确度、落地效果等提出更高要求,传统行业企业积极寻求合作共同研发企业级应用大模型。

2.2国家政策大力支持

国家对大模型行业秉持包容审慎态度,2023年后相关政策密集出台。政策支持技术与产业应用发展,完善安全合规与行业标准,如推动技术产业化应用、支持模型训练、规范数据集标准等。

2.3地方政府积极响应

地方政府出台政策支持大模型区域化发展,目标包括推动AI落地、增强科技创新竞争力、引导产业升级、提升公共服务和培养人才等。

三、AI大模型行业应用发展现状

3.1模型具备多种特性

大模型由深度神经网络构建,参数众多,具有规模性、涌现性和泛化性。依应用领域分为通用、行业和垂直大模型,不同类型服务于不同场景范围。

3.2供给端范式转变

大模型发展推动技术架构全栈升级,供给端生产范式从传统手工标注转向基于业务逻辑微调与反馈机制,基础设施、模型层和应用层均快速发展,提升了模型性能和应用效果。

3.3需求空间持续释放

行业数智化转型驱动市场规模增长,2023年达105亿元,预计2024年达165亿元,各行业应用集中于探索孵化期和试验加速期,未来需求空间广阔,数字原生行业和传统生产性服务业采用进展较快。

3.4应用与技术双向反馈

技术端面临数据、算力和算法挑战,需优化硬件、算法框架和整合监管数据;应用端关键在于理解行业知识、完善标准和平衡成本效益,双向反馈迭代保障模型落地和长期效益。

3.5技术发展新趋势

多模态和Agent技术深入发展,多模态提升模型能力和用户体验,Agent向主动式发展,大模型应用从技术竞争转向行业需求驱动。

四、AI大模型企业级产品应用竞争力分析

4.1核心技术与需求决定竞争力

大模型企业级产品应用竞争力取决于核心技术和企业级需求,包括多模态支持、专业文本处理等技术指标,以及场景适配、用户交互、安全合规等多维度需求指标。

4.2企业级应用大模型格局

企业级应用大模型以AI云厂商为主,运营商云逐步入局,部分行业企业和科研机构也推出行业大模型。

4.3百度智能云竞争力领先

百度智能云在产品技术、服务能力和行业经验等方面表现突出,企业级产品应用竞争力处于领先地位。

五、AI大模型行业应用与优秀案例

5.1金融行业

• 应用广泛多元:43%金融机构使用大模型,应用场景涵盖前后台,包括流程自动化、风险监测、智能分析决策等,提升运营效率、降低风险、优化资源配置。

• 百度智能云与泰康保险集团合作案例

• 项目背景与需求:泰康保险集团业务多元,需统一知识建设、高效获取知识、激活价值,融合新技术降本增效,提升业务场景适配性和专业性。

• 解决方案与成果:基于百度智能云平台搭建知识与大模型应用底座,提供AI应用级服务,构建泰康知识平台,实现知识系统性管理,提升内勤办公效率,推出创新代理人培训产品。

• 火山引擎与海尔消费金融合作案例

• 项目背景与需求:消费者金融服务需求渠道不畅,海尔消金需借助大模型提升客户服务和组织效率。

• 解决方案与成果:火山引擎提供全栈大模型工具,双方打造消金大模型,满足海尔消金90%以上智能化场景需求,提升信贷资产管理效率和用户服务体验。

5.2能源行业

• 推动全流程变革:大模型与能源场景融合,实现全流程智能化升级和数字化转型,提高生产效率和安全性,支持可持续发展,应用于能源生产、传输、运营和消费各环节。

• 百度智能云与国家电网合作案例

• 项目背景与需求:电力专业应用数据丰富但信息提炼困难,新能源并网和新型经营主体接入给电网带来挑战,需提升数据和知识服务水平,加速模型应用。

• 解决方案与成果:百度智能云提供基础模型和工具链平台,支持国家电网打造光明电力大模型,在电网规划、运维、运行和客户服务等方面取得显著效益,提升模型专业能力。

• 科大讯飞与羚羊工业合作案例

• 项目背景与需求:能源变革背景下,羚羊工业致力于制造业智能化转型,需大模型与能源场景深度融合。

• 解决方案与成果:羚羊能源大模型基于讯飞星火大模型,解决小模型痛点,具备多种核心能力和特性,覆盖能源六大行业场景,在电力问数和营销客服等方面提升效率和服务质量。

5.3教育行业(简述思路,可根据实际情况补充案例详情)

大模型在教育行业辅助教学、个性化学习、智能辅导等方面发挥作用,如提供智能教学工具、实现个性化学习路径规划、辅助教师教学决策等,推动教育数字化转型,提升教育质量和效率,部分厂商推出针对性教育大模型及解决方案,助力教育创新发展。

5.4科学行业(简述思路,可根据实际情况补充案例详情)

大模型助力科学研究数据处理、分析和模拟,如在天文、生物等领域加速科研进程,提供高效数据分析手段、精准模拟预测能力,部分科研机构和企业利用大模型开展合作,促进科学发现和技术创新,有望在多学科领域取得更多突破。

5.5医疗健康行业(简述思路,可根据实际情况补充案例详情)

大模型应用于医疗影像诊断、疾病预测、智能问诊等,辅助医生提高诊断准确性、提升医疗效率,如通过影像分析辅助疾病早期发现,基于大数据预测疾病风险,提供智能问诊服务引导患者就医,多家企业和医疗机构合作探索更多应用可能,推动医疗服务质量提升和健康管理发展。

5.6高端制造行业(简述思路,可根据实际情况补充案例详情)

大模型赋能高端制造生产流程优化、质量控制、智能运维等,实现智能制造,如优化生产调度、精准质量检测、预测设备故障,制造业企业与科技企业合作,引入大模型提升竞争力,推动产业升级和创新发展。

5.7互联网行业(简述思路,可根据实际情况补充案例详情)

互联网行业利用大模型提升内容生成、推荐系统、智能客服等服务质量,增强用户体验和运营效率,如生成高质量内容、实现精准个性化推荐、提供高效智能客服解答,互联网企业积极探索大模型应用,创新业务模式和服务方式。

5.8汽车行业(简述思路,可根据实际情况补充案例详情)

大模型应用于汽车自动驾驶、智能座舱、研发设计等领域,提升汽车智能化水平和性能,如辅助自动驾驶决策、优化智能座舱交互体验、加速研发设计过程,汽车企业与科技公司合作,推动汽车行业向智能化、电动化转型,提高产品竞争力和用户满意度。

5.9交通行业(简述思路,可根据实际情况补充案例详情)

大模型助力交通流量预测、智能调度、路径规划等,优化交通运营管理,缓解拥堵、提高运输效率,交通部门和企业利用大模型技术,实现交通系统智能化升级,提供更便捷出行服务,促进智慧交通发展。

5.10政务行业(简述思路,可根据实际情况补充案例详情)

大模型在政务领域应用于智能决策、政务服务优化、政策解读等,提升政府治理效能和服务水平,如辅助决策分析、提供智能政务服务咨询、帮助公众理解政策,政府部门积极探索大模型应用,推动数字政府建设和政务服务创新。

附录

包括AI、LLM、RAG、RLHF、Agent等专业名词解释,以及沙利文研究方法论介绍,涵盖行业周期研究、融合多种研究方法、专家分享和观点阐述等内容。

中央企业人工智能应用场景优秀案例白皮书(2024年版)总结

一、编制背景与目的

1.1背景

人工智能成为全球战略竞争焦点,党中央高度重视其发展,强调要抢占战略制高点,促进与经济社会深度融合。国资央企积极响应,推动人工智能与企业发展相结合,加速与实体经济融合,发展新质生产力。

1.2目的

推广央企人工智能实践经验,做大做强产业生态。中央企业人工智能协同创新平台委托南方电网公司牵头编制白皮书(2024版),遴选创新性与应用性强的案例,展示人工智能在各领域关键成果,推动技术应用与发展。

二、案例精选与行业分布

2.1案例精选

从众多案例中精心挑选出24个极具代表性的案例,涵盖能源、制造、信息服务等行业。这些案例均经过严格筛选,具有较高的创新性和应用价值,能够充分展示人工智能在不同领域的应用成果。

2.2行业分布广泛

• 能源行业:包括电网调度运行、设备监测诊断、充电桩运行分析与选址等方面的应用,如南方电网的调度操作票智能生成及校核、深圳供电局的变电设备智能巡检等案例,推动能源行业智能化转型,提高能源利用效率和供应可靠性。

• 制造行业:涉及炼化装置故障诊断、生产优化、汽车研发与制造等环节,如中石化炼化工程的大机组智能故障诊断、东风汽车集团的智能座舱研发等案例,助力制造企业提升生产效率、降低成本、提高产品质量。

• 信息服务行业:涵盖智能问答、民航运价管理、航运大模型服务等应用,如广西电网的“人力小智”智能问答助手、中航信移动科技的民航多模态大模型等案例,提升信息服务的智能化水平,改善用户体验,推动行业创新发展。

三、能源行业案例剖析

3.1电网调度智能化

• 南方电网调度操作票智能生成及校核

• 技术方案:基于知识图谱技术构建调度知识图谱,融合电网物理模型图谱和操作规程语义图谱,实现操作票智能生成与校核。系统集成于调度云平台,依托新型调度AI认知服务平台进行图谱构建,通过信息关联推导生成操作票,并对执行过程进行合规性和安全性校核。

• 成效显著:在南网总调、广西中调试点应用,直流设备校核正确率达95.7%,交流设备校核正确率达97.6%;东莞地调试点操作票生成准确率超99%,编制时间大幅缩短,工作效率显著提升,为电网紧急操作和峰值工作提供有力支持,提升了调度操作的智能化水平。

• 深圳供电局变电设备智能巡检

• 创新实践:基于大瓦特 - CV(L0)大模型构建变电设备及环境隐患智能识别场景应用,通过全量微调构建大瓦特 - 变电 - CV(L1),实现变电域基础部件与目标识别,采用轻量化微调 + 蒸馏压缩技术处理巡检外观缺陷等图像。提出多任务模型联合学习的知识重组方法和知识点自适应的模型知识蒸馏技术,提升模型性能,并打通AI飞轮机制,实现生产端人工图片复核结果回传,优化模型。

• 应用成果:模型准确率较高,如主变压器准确率达82.2%,带均压环的避雷器准确率达86.7%等,平均准确率为81.3%。大模型智能识别提高了工作安全性与效率,人机协同复核图片使人力成本大幅降低,同时增强了变电设备缺陷巡检和预警能力。

3.2能源生产与管理优化

• 中石化炼化工程大机组智能故障诊断

• 技术原理:针对离心压缩机组,采用基于数据驱动和故障机理相结合的方式。通过分析故障机理,结合信号处理方法,提取振动参数故障特征,形成故障特征库。运用自编码器Autoencoder、卷积神经网络CNN等数据驱动方法,对机组振动特征参数进行分类,建立智能诊断模型,实现9类典型故障智能诊断。

• 效益显著:通过推广应用,可减少非计划停机或停工事件,延长设备寿命,缩短检修周期,降低故障停机时间,提高生产效率和经济效益。预计一家企业每年可降低非计划停机1 - 2次,减少直接或间接经济损失约400万。

• 云南电网充电桩运行智能分析与辅助选址

• 方案实施:基于“人 - 车 - 桩 - 网”四个维度,结合彩云充平台充电桩运营数据、电动车运行数据、计量电能量平台配变负荷数据、地图POI数据和人流量数据等,使用机器学习群体式元启发式算法构建充电设施选址定容规划评估模型,建设充电基础设施网络规划及精准布点能源大数据应用。开展城市POI分析、区域重要性评估和充电时空需求预测等技术研究,为选址提供多维度数据支撑。

• 取得成效:平台与国家监测平台实现数据互联互通,楚雄市等16个州(市)级充电设施监管平台接入,形成全省充电数据收集和监管体系。优化补贴管理模式,减少“僵尸桩”和低效桩数量,保障政府投资资金合理分配,赋能政府政策落地,促进节能减排和行业发展。

四、制造行业案例解读

4.1汽车制造智能化创新

• 东风汽车集团智能座舱研发应用

• 多模态感知赋能智能座舱

• 技术应用:基于人工智能技术实现驾驶员监测系统(DMS)和乘员监测系统(OMS),通过捕捉驾乘员脸部特征与手部眼部动作,判断乘员状态和意图,提供舱内交互与安全预警服务。DMS摄像头采集图像,经模型推理进行图像识别、特征提取等处理,通过光、声等信号提醒驾驶员,保障驾驶安全;OMS实现乘员状态监测和手势识别,提供个性化服务。

• 应用成果:产品已搭载于东风奕派007、奕派008等车型超万台,通过相关功能认证,在各类天气和座舱环境下性能提升。2023年攻克座舱具身智能体前置技术,推出监测系统模组产品,季度收益达396万元,减少交通事故,为汽车制造商提供决策支持。

• 汽车造型AI创新应用

• 设计平台创新:融合AIGC技术与整车研发造型流程,打造基于国产化自主可控算力底座的一体化汽车造型设计平台。采用国产寒武纪8卡GPU提供算力,构建大模型代理平台实现算力调度,运用多种技术提升设计效率与质量,如模型迁移实现底层自主可控、推理加速提升速度、多模型整合满足不同设计需求、断点续训练提高训练容错效率、推理调优辅助设计师上手、安全护栏过滤不良内容、业务流集成覆盖全造型流程。

• 取得成效:项目硬件和软件完全自主可控,提升了创意方案数量,降低了资源投入,缩短了设计时间,提高了工作效率。产品覆盖多个品牌车型,推动汽车造型设计智能化发展,带动汽车设计产业升级,具有显著的经济效益和可持续发展潜力,5年项目综合收益预计达8400万元。

4.2石化生产智能优化

• 中石化炼化装置故障诊断与优化

• 典型装置实时在线优化

• 技术方案:针对乙烯装置裂解炉模拟计算的挑战,开发蒸汽裂解反应模型。输入层以裂解原料性质和操作条件为特征,通过全连接神经网络和基于注意力机制的长短期记忆网络处理,融合后经单层感知器输出裂解产物收率预测结果,实现端到端训练,优化原料结构和裂解炉操作条件。

• 应用成效:现场测试表明,应用实时优化模型和平台后,双烯收率提高0.315wt%,每吨乙烯产品效益增加19.52元,百万吨乙烯规模装置年增效可达1952万元,提升了乙烯装置经济效益,对化工行业流程模拟和操作优化具有重要意义。

• 在线实时优化软件(RTO)研发应用

• 技术攻关:石化盈科牵头承担乙烯裂解、S Zorb、连续重整3类工艺的专用RTO软件攻关,采用大量人工智能算法和模型技术,包括数据预处理、稳态工况判断、SQP求解器、非梯度求解器等核心技术,形成相关工艺模型。面向实时优化的数据预处理采用机器学习算法,开发多种算法和模型,如乙烯裂解炉专用实时优化软件。

• 应用成果:该软件对推动石化行业智能制造具有重要战略意义,有助于提升新质生产力,保障国家能源安全及产业链供应链稳定,但也面临数据质量和模型解释性等挑战。

五、信息服务行业案例展示

5.1智能问答与知识管理

• 广西电网“人力小智”智能问答助手

• 系统架构与功能:接入大瓦特大模型底座并优化,建设智搜智能问答支撑服务,包括人资制度全场景问答、业务数据查询、业务流程智能辅助管理等。构建用户画像体系、人资知识空间、知识标签体系等,实现基于智能问答的场景应用和知识管理。用户通过自然语言交互获取知识和服务,系统自动解析检索相关信息,提供个性化答案。

• 应用效果显著:提高了人资制度知识查询效率,确保政策信息准确传达,员工能快速获取人力资源知识,提升了人资业务处理效率和员工自助获取服务体验,推动人资业务数字化运转。

5.2航运与民航智能化服务

• 中远海运航运大模型服务平台

• 平台构建与技术应用:以航运大数据为核心,利用国产大模型将用户输入转化为结构化数据,融合航运数据库构建知识图谱,实现智能对话。构建数据收集整理标准流程,从多源收集知识数据,构建航运知识图谱,采用多种技术进行本体构建、实体抽取等。运用微调技术优化知识图谱,提供准确航运信息和决策支持,加强实时数据处理与响应能力。

• 成效与价值:优化了资源配置,提升了信息管理效率和资源分配科学性;改善了服务流程,提高了用户交互效率和体验;创新了业务模式,支持本地化部署和私有化运维;为决策提供了支持,提升了模型性能和决策准确性;推动了行业可持续发展,降低了系统运行负担,促进了绿色发展,为航运行业数字化转型注入新活力。

• 中航信民航多模态大模型技术与应用

• 模型研发与功能实现:研发具备跨模态理解能力的民航多模态大模型“千穰”,聚焦跨模态训练数据整理、知识图谱构建、模型训练方法等问题。完成多项垂域大模型技术创新,如基于知识图谱自动构建技术完成百万级民航知识库,构建自适应训练目标函数等算法提升学习效率,基于自研技术提升模型专业性、时效性和可控性,研发分布式算力平台和全流程开发套件,支持国产GPU芯片高效训练与推理。

• 应用成果与行业影响:“千穰”是国内首个民航大模型,为智慧民航建设奠定模型基座,已应用于民航智能客服、视觉监控、航班预测等产品,服务40多家民航机构,累计产生直接收益超2000万元,每年为行业节约上亿成本,提升了服务效率和质量,改善了旅客体验,为垂域大模型建设提供范例。

5.3民航运价智能管理

• 中国民航运价大模型构建与应用

• 模型框架与技术特点:民航运价大模型涵盖数据采集清洗、微调训练、模型推理部署全过程,构建面向多场景应用的AI解决方案。利用全行业数据进行领域数据清洗和处理,采用高效微调平台与多阶段微调策略,结合多种训练算法和优化算法,支持国产化适配及多种分布式训练框架,提供灵活数据加载方式和数据增强技术,通过Web UI简化操作流程。

• 智慧应用场景与成效:在智慧办公和智慧出行场景有多种应用,如智能价单解析实现价单自动解析和发布全流程自动化,提高航司效率;智能规则翻译提升翻译准确性和系统易用性;热点事件分析辅助航司调整运价政策;行程规划应用为旅客提供个性化行程规划服务。支撑企业智慧办公,提升工作效率和运营效益,为旅客提供便捷智能服务,提升满意度,推动民航业智能化发展,助力构建新型智能民航体系。

六、总结与展望

6.1人工智能应用成果与意义

中央企业在人工智能应用方面取得显著成果,涵盖能源、制造、信息服务等行业,推动了产业升级和创新发展。这些应用提高了生产效率、优化了资源配置、提升了服务质量,增强了企业核心竞争力,为经济社会发展注入新动力,也为人工智能技术的发展和应用提供了宝贵经验。

6.2未来发展趋势与挑战

未来,人工智能将在更多领域深入应用,技术创新持续推进,如多模态技术、智能决策等将不断发展。同时,也面临数据安全、隐私保护、算法可解释性等挑战。中央企业应继续发挥引领作用,加强技术创新,攻克难题,推动人工智能与实体经济深度融合,助力我国经济高质量发展。以下是对《20250103_微软:美国AI的黄金机遇》文档的五千字详细总结:
文档核心内容概述
文档由微软副董事长兼总裁Brad Smith撰写,发表于2025年1月3日,主要探讨了未来四年美国在人工智能(AI)领域的发展机遇。作者认为,AI是当今时代的电力,有望在未来四年为美国奠定二十五年的经济成功基础。文档从技术成功愿景、技术是经济增长的基础、全球领先的AI技术和基础设施、AI技能提升、AI出口五个方面展开论述,强调了美国在AI领域的独特优势和面临的机遇与挑战,并提出了相应的建议和措施。
技术成功愿景
• 推进AI技术和基础设施投资:美国需要在世界领先的AI技术和基础设施上加大推进和投资力度,以保持在全球AI竞赛中的领先地位。微软计划在2025财年投资约800亿美元在全球建设AI使能的数据中心,其中一半投资落地美国,以支持AI模型的训练和AI、云应用的部署.
• 支持AI技能提升计划:为了促进整个经济的AI应用和创造职业机会,美国需要支持AI技能提升计划。通过扩大熟练掌握AI技能的研究人员和从业者的数量、将AI技术融入教育课程、发展学徒和技能计划等措施,确保美国工人能够适应未来的工作需求.
• 聚焦AI出口:美国应聚焦于向盟友和朋友出口AI技术,以促进国内经济发展,并让其他国家也从AI进步中受益。这需要制定明智的国际战略,迅速有效地将美国AI推广到全球,同时保护好关键AI技术不被战略竞争对手和敌对国家获取.
技术是经济增长的基础
• 历史工业革命与通用技术:自18世纪中期以来,世界经历了多次工业革命,每一次革命都由突破性技术驱动,这些技术被称为通用技术(GPT),能够促进整个经济的创新和生产力。例如,蒸汽机开启了第一次工业革命,电力推动了第二次工业革命,计算机芯片和软件引领了第三次工业革命.
• AI作为新兴通用技术:展望未来,AI有望成为改变世界的通用技术,推动经济各行各业的创新和生产力提升。美国已准备好占据这场新技术浪潮的前沿,尤其是如果能够加倍发挥自身优势并有效开展国际合作,成功的概率会更高.
全球领先的AI技术和基础设施
• 私营部门的力量:美国的技术力量一直植根于私营部门,如今在全球AI竞赛中占据领先地位,这要归功于私人资本的投资和美国企业的创新。微软与OpenAI的合作、Anthropic和xAI等新兴企业以及微软自己的AI软件平台和应用都是例证.
• 基础设施投资的重要性:大规模基础设施投资是AI创新和使用的关键基础。微软计划投资建设的AI使能数据中心,将为AI模型的训练和AI、云应用的部署提供强大的支持.
• 技术生态的协同:美国AI技术的发展依赖于广泛及有竞争力的技术生态,包括芯片供应商、应用公司、系统集成商、服务提供商等,以及数百万使用产品为客户定制解决方案的软件开发人员。这一切的前提是大规模数据中心,得益于基建公司、钢铁和其他材料的制造商,以及电力和液冷技术的创新进步.
AI技能提升
• 技能提升的必要性:AI正在重塑工作的本质及未来的工作岗位,提升AI技能已经成为国家的必需。通过技能提升计划,可以降低许多职业的准入门槛,创造新的经济机会,提高每个行业的生产效率.
• 国家AI人才战略:制定一项国家AI人才战略,让所有年龄和背景的美国人有机会获得提高经济水平所需的AI技能。这将需要跨越地域、组织、经济和政治分歧的非常广泛的伙伴合作.
• 教育与培训的多样化:AI技能的培训可以通过多种途径进行,如在线培训平台、社区大学、四年制机构等。微软等科技企业也在发挥重要作用,如为美国学生、工人和社区人员提供AI技能培训,帮助他们获得新工作、换职业赛道及创业.
AI出口
• 国际竞争与战略:美国需要一个明智的国际战略,在全球范围内迅速支持美国的AI。这涉及到与盟友及朋友的合作,以及在国际市场上与战略竞争对手如中国的竞争。美国应确保将美国AI作为一种优越的替代方案加以推广.
• 私营部门的作用:美国科技公司和私人资本市场正在投入巨资,将美国的AI平台推广到全球。例如,微软计划在三年内在14个国家投资超过350亿美元,构建安全可信的AI和云数据中心基础设施.
• 出口管制政策的平衡:美国需要制定务实的出口管制政策,取得两方面的平衡:为可信数据中心的AI组件提供强大的安全保护;同时允许美国企业快速扩张,为作为美国盟友和朋友的众多国家提供可靠的供应.
作者观点与建议
• 政府、私营部门及教育机构的合作:实现美国AI发展的愿景,需要政府、私营部门以及全国教育和非营利机构的领导者团结起来,共同推进AI技术的发展和应用.
• 持续的研发投入:加大对基础研究的资助,支持高校和科技公司进行AI领域的研究和开发,以保持美国在AI技术上的领先地位.
• 技能提升与教育改革:将AI技术融入教育课程,发展学徒和技能计划,确保美国工人能够适应未来的工作需求,为经济注入活力.
• 国际战略与合作:加强与盟友及朋友的合作,制定明智的国际战略,推广美国AI技术,同时保护好关键AI技术不被战略竞争对手获取.
• 政策支持与监管平衡:政府应制定有利于AI发展的政策,支持私营部门的创新和投资,同时在出口管制等方面取得平衡,确保美国企业在国际市场上具有竞争力.

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《AI大模型入门+进阶学习资源包**》,扫码获取~

篇幅有限,部分资料如下:

👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。

路线图很大就不一一展示了 (文末领取)
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述

👉GitHub海量高星开源项目👈

💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告(持续更新)👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值