成为AI产品经理:深入解析
一、AI产品经理的三种类型
在人工智能领域,产品经理的角色日益重要,他们负责将AI技术转化为实际的产品。根据侧重点的不同,AI产品经理可以分为三种类型:
-
AI平台产品经理 (AI Platform PM):
这类产品经理专注于为AI工程师构建工具和基础设施。他们的工作重点是提高AI开发效率,确保工程师能够高效地构建和部署AI模型。
-
AI原生产品经理 (AI Native PM):
这类产品经理的核心工作是开发以AI为核心功能的产品。他们需要深入理解AI技术,并将其巧妙地融入到产品体验中,从而创造出独特的用户价值。
-
AI赋能产品经理 (AI-Enabled PM):
这类产品经理利用AI技术来增强现有产品的功能。他们需要寻找合适的AI应用场景,并将AI技术无缝集成到现有产品中,从而提升用户体验和产品效率
二、成为AI产品经理的关键
构建自己的AI产品是关键: 想要成为一名AI产品经理,最好的方法就是动手实践,从构建自己的AI产品开始。通过实际操作,你可以深入了解AI技术的原理和应用,从而更好地理解用户需求和产品开发流程。
真正的挑战: 真正的挑战在于识别正确的问题,并将这些问题有效地转化为AI工具可以理解的形式。这意味着你需要具备良好的问题分析能力和沟通能力,能够准确地定义用户需求,并将这些需求转化为AI模型的输入。
避免盲从: 不要简单地复制现有的AI界面,例如ChatGPT。你需要寻找独特的解决方案,而不是重复别人已经做过的事情。
持续价值与迭代: 专注于为客户创造价值,并允许团队进行实验和迭代。这意味着你需要不断地收集用户反馈,并根据反馈不断改进你的产品。
AI简化而非仅仅自动化: AI应该使产品体验更简单,降低用户创造内容的门槛。AI的真正价值在于提升用户体验,而不是仅仅为了自动化而自动化。
拥抱不确定性: 乐于探索和调整,直到产品“拉动”你前进。这意味着你需要具备灵活的思维方式,并能够快速适应变化。
三、背景知识
产品经理的角色: 产品经理负责整合不同的团队(设计、工程等),以创造有影响力的产品,代表客户并找到解决方案。他们是连接用户需求、技术实现和商业目标的桥梁。
AI正在成为基础设施: AI很可能成为SaaS应用中的常见组件,类似于数据库。这意味着AI将不再是少数公司的专属技术,而是成为各行各业的通用工具。
好奇心的重要性: 好奇心是探索新工具和解决方案的驱动力。作为AI产品经理,你需要保持对新技术的敏感性,并不断学习新的知识。
AI的“iPhone时刻”: ChatGPT的发布是一个关键时刻,但技术仍在不断发展。这意味着AI领域仍然存在巨大的发展潜力,你需要保持学习,并不断探索新的可能性。
AI中的“宜家效应”: 用户在对最终体验有一定的控制权时,会感到更加投入。这意味着你需要给用户提供一定的自由度,让他们能够参与到产品的创造过程中。
四、如何成为一名AI产品经理
专注于问题: 热爱你正在解决的问题,技术将帮助你突破其界限。这意味着你需要选择一个你真正感兴趣的领域,并将其作为你职业发展的动力。
学习基础知识: 了解机器学习和AI的基础知识。你需要了解AI的原理,以便更好地理解AI的局限性和潜力。
动手实践: 尝试使用AI工具,并挑战它们的极限。通过实践,你可以更好地理解AI的应用场景,并发现新的可能性。
建立作品集: 创建AI驱动的原型来展示你的技能。这将帮助你展示你的能力,并提高你的职业竞争力。
三个关键的招聘因素:
-
你是否能胜任这份工作?
-
你对这项工作充满热情吗?
-
你是否是大家愿意共事的人?
AI工具使事情变得更容易: 诸如Cursor、v0、Replit、Midjourney和DALL-E之类的工具可以实现快速原型设计和设计。这些工具可以帮助你快速验证你的想法,并减少开发时间。
产品经理比以往任何时候都更重要: AI工具可以构建东西,但产品经理需要识别正确的问题并将其传达给AI。这意味着产品经理的角色更加重要,他们需要具备更强的战略思考能力和沟通能力。
AI产品经理具有影响力: 他们可以利用AI工具来传达想法并影响决策。这意味着AI产品经理不仅需要具备技术能力,还需要具备一定的领导力和影响力。
四、如何成为顶尖的5% AI产品经理
不要随波逐流: 避免构建与其他人相同的AI产品。你需要寻找独特的解决方案,而不是重复别人已经做过的事情。
专注于独特的解决方案: 寻找使用AI的创新方法,而不仅仅是复制现有的界面。这意味着你需要具备创新思维,并能够发现新的应用场景。
质疑对AI代理的需求: 考虑是否有必要在内部构建AI代理,或者是否可以集成现有模型。这意味着你需要具备成本意识,并能够合理地利用现有资源。
解决问题,而不仅仅是“做AI”: AI是一种工具,而不是目标本身。这意味着你需要专注于解决用户痛点,而不是仅仅为了使用AI而使用AI。
“边走边嚼口香糖”: 平衡交付价值与实验和迭代。这意味着你需要同时关注短期目标和长期发展,并不断改进你的产品。
拥抱快速的技术变革: 为失败和持续迭代做好准备。这意味着你需要具备快速学习能力,并能够适应不断变化的环境。
五、如何找到好的AI产品创意
衡量AI的影响: 定义指标以评估AI原型的有效性。这意味着你需要建立一套完善的评估体系,以便衡量AI的实际效果。
使用黑客马拉松: 鼓励实验并确定AI可以解决的问题。黑客马拉松可以激发团队的创造力,并发现新的AI应用场景。
专注于用户体验: 从成功的AI产品中学习,并了解它们的成功之处。这意味着你需要关注用户体验,并不断改进你的产品。
AI简化而非仅仅自动化: AI应该使产品体验更简单,降低创造的门槛。AI的真正价值在于提升用户体验,而不是仅仅为了自动化而自动化。
贝蒂·克罗克的例子: 人们希望对体验有一定的控制权,而不是完全自动化。这意味着你需要给用户提供一定的自由度,让他们能够参与到产品的创造过程中。
六、个人贡献者 (IC) 产品经理
专注于客户问题: 以解决客户问题为驱动力。这意味着你需要深入了解用户需求,并将其作为你产品开发的出发点。
三个关键方面:
-
能量:
在会议和项目中带来热情和激情。这意味着你需要具备积极的工作态度,并能够感染你的团队。
-
等待和游荡:
乐于接受不确定性,并积极探索新的方向。这意味着你需要具备灵活的思维方式,并能够快速适应变化。
-
放大信号:
使用工具来识别关键问题并做出明智的决策。这意味着你需要具备数据分析能力,并能够利用数据来指导你的决策。
以身作则: 成为积极参与解决问题的“球员教练”。这意味着你需要积极参与到产品的开发过程中,并为团队树立榜样。
同理心: 理解其他团队成员面临的挑战。这意味着你需要具备同理心,并能够理解团队成员的感受。
“让它发生”的态度: 培养行动和执行的文化。这意味着你需要具备执行力,并能够推动项目向前发展。
“游荡”是关键: 积极寻求方向而不是等待方向。这意味着你需要主动探索新的可能性,而不是被动等待。
AI作为信号放大器: 使用AI从噪声中提取有价值的信息。这意味着你需要利用AI来提高工作效率,并做出更明智的决策。
享受过程: 保持好奇心,学习并享受乐趣。这意味着你需要保持对新技术的敏感性,并乐于探索新的可能性。
七、关键概念解释
-
AI平台产品经理 (AI Platform Product Manager):
专注于为AI工程师构建工具和基础设施的产品经理。
-
AI原生产品经理 (AI Native Product Manager):
开发以AI为核心功能的产品,并驱动用户体验的产品经理。
-
AI赋能产品经理 (AI-Enabled Product Manager):
利用AI增强现有产品并提高工作效率的产品经理。
-
个人贡献者 (IC) 产品经理 (Individual Contributor (IC) PM):
专注于个人项目,不承担团队管理责任的产品经理。
-
“宜家效应” (“IKEA Effect”):
人们在参与创造事物时,会更重视这些事物的倾向。
八、额外见解
-
能量的重要性:
在会议中带来热情可以产生显著的影响。
-
“游荡”的价值:
积极探索新的方向对于产品经理至关重要。
-
AI作为信号放大的工具:
AI可以帮助产品经理识别关键问题并做出明智的决策。
-
享受旅程:
保持好奇心和乐趣对于长期的成功至关重要。
史蒂夫·乔布斯的名言: “你的时间有限,所以不要浪费时间活在别人的生活里。”
九、AI产品经理必备技能
大模型选型能力
-
了解主流大模型(GPT系列、Claude、LLaMA等)的特点和优劣势
-
掌握模型评估维度:性能、成本、延迟、安全性等
-
能够根据业务场景选择合适的模型
-
理解模型的局限性和潜在风险
我们自研的ALLM是一款专门为产品经理而研发的AI工具,不但可以做模型比对以及成本比对,同时按需收费,不用多个模型多个平台来回切换,也不用投入多个月付费,其优秀的XML格式提示词反推功能,给产品经历带来更多的体验性创新,无论学习还是工作都需要的神器。
提示词工程核心技能(重点)
A. 提示词框架设计
-
掌握Role(角色)、Task(任务)、Context(上下文)框架
-
学会制定清晰的输出格式和约束条件
-
能够构建多轮对话的提示词链
B. 提示词优化技巧
-
使用Few-shot示例增强模型理解
-
运用Chain of Thought引导模型思考
-
善用Temperature参数调节回答的创造性
-
掌握提示词模板化和变量设计
C. 提示词测试与迭代
-
建立提示词效果评估体系
-
进行A/B测试优化提示词
-
收集用户反馈持续改进
-
建立提示词版本管理机制
产品设计能力
-
理解AI能力边界,设计合理的产品功能
-
规划提示词管理平台
-
设计异常处理机制
-
产品安全与伦理把控
技术理解能力
-
了解LLM基础知识
-
掌握API调用方式
-
理解Token计算规则
-
了解基本的微调技术
实践要求
-
搭建提示词实验环境
-
建立提示词测试数据集
-
进行充分的场景测试
-
记录并总结最佳实践
重点提示词工程建议:
-
建立个人的提示词模板库
-
多进行场景实验和对比测试
-
持续积累和优化提示词经验
-
关注提示词工程的最新发展
-
建立提示词评估的量化指标
实践路径:
-
从基础提示词入门
-
掌握提示词优化技巧
-
建立提示词工程方法论
-
形成个人最佳实践
-
持续学习和优化
那么,如何系统的去学习大模型LLM?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《AI大模型入门+进阶学习资源包**》,扫码获取~
篇幅有限,部分资料如下:
👉LLM大模型学习指南+路线汇总👈
💥大模型入门要点,扫盲必看!
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。
路线图很大就不一一展示了 (文末领取)
👉大模型入门实战训练👈
💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉国内企业大模型落地应用案例👈
💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
👉GitHub海量高星开源项目👈
💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
👉LLM大模型学习视频👈
💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
👉640份大模型行业报告(持续更新)👈
💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉获取方式:
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓