想象一下,你有一个非常聪明的AI模型,已经学会了很多事情,比如理解语言、识别图片等,但这并不意味着它能完美地处理你特定的任务。比如,如果你希望它能在扫描文件时找到异常,或者理解客户反馈的真实意思,你就需要“教”它一些新技能。这时候,微调就派上用场了。
微调就像是给AI模型加上特别的“调味料”。虽然这个模型已经是一个通用的大厨,懂得很多基础的烹饪技巧,但通过加入一些特殊的调料和配方,你可以让它在特定的任务上做得更好。调整超参数,就是给这些“调味料”找到最合适的配比。
相关的学术研究也深入探讨了超参数微调。例如,_《An Empirical Study on Hyperparameter Optimization》研究了微调的前沿优化技术;《Rethinking the Hyperparameters》挑战了传统做法,并提供了实用的指导;《Efficient Fine-Tuning Strategies for LLMs》关注了语言模型中的数据效率和超参数优化;《An Empirical Study of LLM Tuning》_则强调了超参数优化对大模型微调的影响。
在行业层面,超参数微调的进步也备受关注。例如,AutoML通过自动选择超参数来简化LLM微调过程;OpenAI的最新自定义功能使用户可以微调超参数,并获取全面的训练反馈;而GPT-3.5 Turbo和GPT-4等商业微调API,通过融入新知识,提升了性能。
01
什么是微调?
微调(Fine-tuning)是对已经经过大规模训练的AI模型进行再训练,使其适应特定任务或领域的过程。简单来说,微调就像是给一个已经学得很好的AI“补课”,让它能够更好地完成你所需要的具体任务。微调的挑战在于教模型新任务,同时保持其现有技能不变。
举个例子,一个擅长画风景的人决定改用肖像画,他们了解基本知识、色彩理论、笔触、透视 , 但现在他们需要调整自己的技能来捕捉表情和情感。
LLM 微调有助于LLMs 专业化。它需要他们广泛的知识,并训练他们使用更小的数据集完成特定任务。
1、微调的过程
-
从预训练模型开始:首先,选一个已经在大规模数据集上训练过的模型。这个模型已经学会了很多通用的知识和技能。加入数据:然后,你使用与你任务相关的数据对模型进行再训练。比如,你可以用你公司客户的反馈数据,或者用你要检测的特定异常图像。
-
调整超参数:在微调过程中,你会调整一些参数(叫做超参数),比如学习速率和训练次数,这些调整帮助模型更好地适应你的需求。
-
优化结果:通过这个过程,AI模型会逐步学习你所需要的特定任务,比如如何更准确地判断客户反馈的情感,或者怎样从图像中识别出异常。
2、微调的好处
-
节省时间和资源:因为你不是从零开始训练模型,而是利用已经预训练好的模型,所以微调比从头训练一个模型要快得多。
-
适应性强:通过微调,模型能够快速学习特定领域的知识,提高在具体任务上的表现。
-
灵活性:微调可以应用于各种不同的任务,不论是文本处理、图像识别,还是语音识别等。
02
为什么超参数在微调中很重要?
超参数是区分“够好”模型和真正出色模型的关键。如果调整得过猛,模型可能会过拟合或错过关键的解决方案。如果调整得过于宽松,模型可能永远无法发挥出它的全部潜力。
这时操作者需要把超参数调优看作一种业务自动化工作流程,假设在与模型对话,不断调整、观察、优化,直到找到最佳状态。
超参数优化过程示意图
03
微调时需要了解的 7 个关键超参数
微调的成功取决于对几个重要设置的调整,同时也是有一定的逻辑的。
1、学习率
(Learning rate)
这是控制模型在训练过程中如何调整其理解的参数。
优化这个超参数至关重要,因为如果你作为操作者…
-
调得太快,模型可能会跳过更好的解决方案;
-
调得太慢,可能会让你觉得像在看油漆干一样无聊——甚至更糟,模型可能完全卡住。
对于微调,通常需要小心、谨慎的调整(有点像调节灯光的亮度开关)。操作者需要在准确性和快速结果之间找到合适的平衡。如何确定合适的混合方式,取决于模型调优的进展情况,操作者需要定期检查它的表现,看是否需要进一步调整。
2、批量大小
(Batch size)
这是指模型每次处理多少数据样本。当你使用超参数优化器时,需要找到一个合适的批量大小,因为…
-
较大的批量处理速度快,但可能会忽略细节;
-
较小的批量速度慢,但更细致。
中等大小的批量可能是“合适的选项”,找到最佳平衡的方法是仔细监控结果,在进入下一步前做好评估。
3、训练轮次
(Epochs)
一个训练轮次是指数据集的完整训练过程。预训练模型已经学到了很多东西,因此它们通常不需要像从零开始训练的模型那样多的轮次。那么多少个轮次合适?
-
轮次太多,模型可能会开始死记硬背,而不是学习(这就叫过拟合),
-
轮次太少,模型可能没有学到足够的知识,无法有效地工作。
4、丢弃率
(Dropout rate)
把这个想象成强迫模型变得更具创造性。操作者通过在训练过程中关闭模型的某些部分来做到这一点。这是防止模型过度依赖某些路径而变懒惰的一种很好的方法。相反,它鼓励模型采用更具多样性的解决策略。
如何调整合适的丢弃率?最优的丢弃率取决于你的数据集复杂性。一个通用的经验法则是:应该根据异常值的可能性来调整丢弃率。
例如,对于医疗诊断工具来说,使用较高的丢弃率有助于提高模型的准确性。如果你在开发翻译软件,可能需要稍微降低丢弃率,以提高训练速度。
5、权重衰减
(Weight decay)
这个设置帮助模型避免过度依赖某个特征,从而有助于防止过拟合。作为操作者,你可以把它看作是一种温和的提醒:“保持简单”。
6、学习率调度
(Learning rate schedules)
这个超参数随着时间的推移调整学习率。通常,你开始时使用较大的更新步长,然后逐渐过渡到精细调整阶段——有点像在画布上先用大笔触绘制,再慢慢完善细节。
7、冻结和解冻层
(Freezing and unfreezing layers)
预训练模型包含了多层的知识。冻结某些层意味着你锁定它们已有的学习成果,而解冻其他层则让它们适应你新的任务,而是否冻结或解冻层,取决于旧任务和新任务之间的相似程度。
04
微调的常见挑战
微调在操作过程中也很可能会遇到一些障碍:
-
过拟合:小数据集容易让模型变得懒惰,学会死记硬背而不是归纳泛化,可以通过使用提前停止、权重衰减和丢弃法等技术来控制这种行为。
-
计算成本:测试超参数就像玩打地鼠游戏,既耗时又需要大量资源。更糟的是,这其实是一场猜谜游戏。你可以使用 Optuna 或 Ray Tune 等工具来自动化一些繁琐的工作。
-
每个任务是不同的:没有一套适用于所有任务的方法。对一个项目有效的技术可能对另一个项目却是灾难性的,因此,使用之前需要进行实验。
05
成功微调 AI 模型的技巧
-
从默认设置开始:查看预训练模型的推荐设置,将他们作为起点或备忘单。
-
考虑任务相似性:如果你的新任务与原任务非常相似,可以进行小的调整并冻结大多数层;如果任务变化较大,允许更多的层进行适应并使用中等学习率。
-
关注验证集的表现:检查模型在独立验证集上的表现,以确保它正在学习泛化能力,而不仅仅是在记忆训练数据。
-
从小规模开始:在全面训练模型之前,先用一个小数据集进行测试。这是快速发现错误并防止问题扩大化的一种方法。
调整超参数可以让你更轻松地训练模型。虽然需要经过一些反复的尝试,但最终的成果是值得的。当你找到合适的调整方法时,模型会在任务中表现得非常出色,而不是仅仅做到“勉强合格”。
那么,如何系统的去学习大模型LLM?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《AI大模型入门+进阶学习资源包**》,扫码获取~
篇幅有限,部分资料如下:
👉LLM大模型学习指南+路线汇总👈
💥大模型入门要点,扫盲必看!
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。
路线图很大就不一一展示了 (文末领取)
👉大模型入门实战训练👈
💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉国内企业大模型落地应用案例👈
💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
👉GitHub海量高星开源项目👈
💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
👉LLM大模型学习视频👈
💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
👉640份大模型行业报告(持续更新)👈
💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉获取方式:
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓