如果你对“大模型Agent平台”还有些模糊,这篇文章,建议你一定要看到最后。在AI圈子里,“Agent”(智能体)正在成为下一个风口。不论是开源社区爆火的AutoGPT,还是各大厂争相推出的“AI助手”、“智能客服”,背后核心其实是一件事:构建一个“能听懂、能思考、能执行”的AI智能体平台。但问题是,这个平台怎么搭?大模型怎么选?语音识别、知识库、角色个性要怎么整合?这张《AI大模型Agent平台架构图》给出了一个系统答案:
我将用七大章节,带你层层拆解这张图,让你真正理解大模型Agent平台的“骨架”与“灵魂”。
第一层:采集层——智能体的“感官系统”
Agent再强,也得先“听得见”、“看得见”用户的输入。
采集层就像是人类的五官,是Agent平台与现实世界之间的“感知入口”。
1、具体包括:
输入方式 | 说明 |
---|---|
音频流 | 用户通过麦克风说话,系统实时接收 |
文本 | 聊天框输入,网页输入框等,最传统的方式 |
视频流 | 用于需要图像识别的Agent,如陪伴型机器人 |
多模态输入 | 同时包含语音、图像、手势、文本等混合信息 |
2、为什么重要?
输入通道决定了Agent可覆盖的场景范围。越丰富的输入,越能满足复杂业务需求,比如:
- 智能客服(听懂用户说话)
- 视频陪伴玩具(识别表情/动作)
- 智能导览机器人(结合语音+图像识别)
第二层:大模型层——Agent的大脑芯片
有了感官,接下来就是“思考”。
大模型层就是Agent的“大脑核心”,也是真正让它“理解语言”、“推理判断”、“生成回答”的关键。
1、主流接入模型包括:
模型 | 产地 | 特点 |
---|---|---|
DeepSeek、QWen2.5 | 国内 | 中文能力强,适配性好 |
Gemini、Claude | 国外 | 多模态、多语言支持优 |
星火、豆包、元宝 | 国内大厂 | 商业稳定性强 |
Grok 3、SiliconFlow | 新兴选手 | 创新性高 |
2、设计亮点:
平台允许动态选择/组合多个模型,做到按需调用,兼顾:
- 高准确性(复杂问题调用强大模型)
- 低成本运行(简单问答调用轻量模型)
3、实战举例:
比如在一个“AI医疗助手”中:
- 问“头疼怎么缓解”用国产模型快速回答;
- 问“这个X光片异常吗?”调用多模态模型处理图像再输出文字。
第三层:模型管理层——让模型适配业务场景
通用大模型并不能直接拿来就用!你需要让它“懂行”。
就像一个新员工必须培训一样,模型也要“训练”,才能更懂你的业务。
1、关键模块:
模块 | 作用 |
---|---|
基础模型 | GPT、Qwen等基础语言模型 |
模型微调 | 用特定领域数据进行训练(如医疗、金融、客服) |
模型优化 | 包括量化压缩、加速推理、负载均衡、版本控制等 |
2、常见技术:
- LoRA、QLoRA 等低成本微调方法
- ONNX、TensorRT 做部署优化
- 多版本灰度发布保障稳定
3、重要性在于:
- 快速适配行业需求(懂业务的模型才有用)
- 降低使用成本(压缩模型,响应更快)
- 便于运维管理(版本可控、可回滚)
第四层:功能层——让Agent“听说表演”
你和Agent的每一次交互,几乎都离不开这个“功能层”。
这个层,就是Agent的“表达力”和“交互感”。
1、核心功能:
功能模块 | 说明 |
---|---|
语音识别(ASR) | 识别人类语音 → 文字 |
语音合成(TTS) | 输出文字 → 变成语音 |
语音活动检测(VAD) | 判断你是不是在说话(自动收听、停顿) |
情绪识别 | 识别语气,如生气、困惑、悲伤等 |
音色个性化 | 定制不同的声音风格(如男声、女声、童声) |
2、一个真实案例:
在一个“老年陪护Agent”中:
听懂奶奶说:“我有点头晕……”(语音识别)
分析语气略显担忧(情绪识别)
轻柔女声回应:“奶奶,可能是血压有点低,您要不要坐下来休息一会?”(语音合成+个性设定)
功能层让Agent不只是“能说”,而是“说得动人”。
第五层:Agent层——让智能体有性格、有逻辑
这是整个平台最有趣、最重要的一层。
这里,Agent真正具备了“身份”、“任务”、“情感”,成为“一个有性格、有目标的AI”。
1、四大关键维度:
模块 | 功能 |
---|---|
知识库设定 | 给Agent一套“私有记忆”,比如产品FAQ、企业内部制度 |
角色设置 | 医生、秘书、销售、情感陪伴者……角色决定说话风格和任务流程 |
Agent协作 | 多个Agent之间分工合作,比如一个负责收集信息,一个负责分析 |
个性化设定 | 包括语气偏好、回答风格、记忆能力等 |
2、一句话概括:
你不再是“问答机器人”,而是“情感助理、知识专家、任务执行者”的多面体。
3、比如:
销售型Agent,热情健谈、目标明确;
教育型Agent,耐心引导、善于总结;
医疗型Agent,严谨、谨慎、常规参考文献。
第六层:接口层——连接世界的关键纽带
再强的Agent,也要“走出去”!
接口层负责打通系统上下游,让Agent可以接入各种App、小程序、网页、IoT设备中。
1、典型接口:
类型 | 说明 |
---|---|
用户接口 | 网页聊天框、移动App、H5嵌入等 |
API接口 | 提供标准RESTful接口供外部调用 |
WebSocket/Dubbo/TCP | 满足高并发、低延迟、系统级接入 |
2、集成典型应用:
- 融入已有的呼叫中心
- 嵌入企业OA系统
- 连接智能音箱、可穿戴设备
接口层是Agent真正落地场景的“通行证”。
第七层:应用层——Agent真正上岗的地方
一切技术,最终都要服务于场景,产生业务价值。
1、热门落地场景包括:
Agent类型 | 应用场景 |
---|---|
客服Agent | 7×24小时自动答疑、催收、投诉处理 |
办公Agent | 日程管理、数据汇总、邮件生成 |
陪伴Agent | 儿童智能玩具、老人陪护机器人 |
教育Agent | 作业讲解、课程辅助、口语陪练 |
安防/值守Agent | 智能监控识别、夜间值守告警 |
你可以根据业务需求选择模型 + 设定角色 + 配知识库 + 接入接口,快速生成可落地的智能体服务。
最后总结:不是一张图,是一套AI时代的系统思维
这张图并不只是一个平台构架图,它代表的是:
- 一种搭建AI产品的方法论
- 一种理解智能系统的逻辑视角
- 一种未来业务自动化的路径地图
强烈建议你收藏这张图,反复推演每一层的作用与价值。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!