当下,AI在各行业的广泛渗透已是不争的事实,作为2025年炙手可热的焦点话题,众多企业纷纷投身AI产品研发领域,不惜以优厚薪资招揽专业技术人才。
如果你有意向朝着AI方向发展,或者已具备一定的后端编程基础,不妨考虑直接转岗从事AI大模型应用开发工作。
即便你没有转岗计划,掌握大模型、RAG、Prompt、Agent等前沿概念,并能够独立完成一些简单项目实践,同样可以为你的求职履历增添亮眼的一笔。
想转AI大模型应用开发按这个顺序学!!
AI大模型应用开发学习路线
阶段1:大模型基础
- 深入了解大模型的概念和背景,掌握国内外大模型的最新发展动态。从简单示例入手,例如研究DeepSeek的输出机制,以此加深对大模型的理解。
- 系统学习生成式模型、大语言模型以及Transformer架构,全面掌握预训练、推理规划、强化学习等关键技术,提升对大模型核心原理的认知。
- 清晰认识Prompt的概念和作用,通过设计有效的提示词引导大模型生成符合预期的输出,并积极进行动手实践和调试,增强对Prompt工程的操作能力。
- 熟悉大模型API的输入输出参数和调用方法,深入理解token概念,为后续使用大模型API进行开发打下坚实基础。
阶段2:RAG应用开发工程
- 全面了解RAG的概念和流程,重点理解RAG在实际项目中的应用场景和工作原理,明确其在不同业务场景下的价值。
- 深入学习RAG的优化技术和设计,例如三大范式等,着重关注RAG的核心机制,掌握提升RAG性能的方法和技巧。
- 熟练掌握质量指标、能力指标的含义和计算方法,以及相关评估工具的使用方式,能够准确评估RAG系统的性能和效果。
- 通过参与实际的开源RAG项目,将理论知识应用于实践,进一步深化对RAG技术的理解和应用能力。
阶段3:大模型Agent应用架构
- 透彻理解LangChain的核心概念,深入学习其核心组件,能够独立使用LangChain连接API、处理数据,并搭建出功能可用的AI工具,提升对LangChain框架的应用能力。
- 强化对LangChain核心概念和组件的学习,重复强调这一过程是为了更好地掌握LangChain,确保能够熟练运用它完成各种任务。
- 具备独立设计能够自动完成任务的Agent的能力,根据不同的业务需求和场景,设计出高效、智能的Agent。
- 详细了解GPTS、Coze、Dify这三个框架的特点,利用这些框架搭建出符合特定需求的应用,拓宽对大模型应用架构的理解和实践经验。
阶段4:大模型微调与私有化部署
- 深入搞懂Transformer的三个核心:自注意力机制、编码器-解码器结构、位置编码,能够独立调通一个微调任务,实现对模型的个性化定制和优化。
- 熟悉几个主流模型的特点,尝试进行本地私有化部署,了解模型在本地运行的环境要求和部署流程,为实际应用提供稳定的模型支持。
- 系统学习开源模型的微调方法,重点掌握选基座模型、处理数据、跑通微调流程等关键环节,提升对模型微调的操作能力。
学习建议
对于后端开发者而言,想要转向AI大模型应用开发,可能会存在诸多困惑。比如,是否需要学习PyTorch?是否要补充机器学习和数学知识?后端开发的经验能否在AI领域得到复用?
实际上,从传统的后端业务开发转向AI应用开发,不仅仅是更换技术栈,更是思维方式、工程经验以及业务理解能力的综合性迁移。
AI应用的核心逻辑
很多人一提到AI,就会联想到高深的数学、复杂的算法和神秘的模型。然而,如果目标是开发AI应用,而非研究新模型,那么其核心思路与后端业务开发在本质上有很多相似之处:
- 大模型本质上是一个强大的API,虽然其功能远比普通API复杂,但同样需要通过业务逻辑进行组织和管理,以实现具体的业务目标。
- 设计Prompt(提示词工程)类似于编写SQL查询,需要学会使用“对AI友好的方式”,引导大模型输出符合需求的内容,这是实现AI应用的关键步骤之一。
- 在开发AI应用时,需要处理上下文、存储用户数据,并结合业务规则进行设计。这些工作与后端开发中的数据处理和业务逻辑实现有一定的相似性,后端开发经验在这些方面可以得到有效的复用 。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!