题目描述:
一个素数是一个大于1的整数,并且它的正因子只有1和它自身。希腊数学家埃拉托色尼开发的一个算法,埃拉托色尼筛法,可以寻找所有小于或等于某个给定的数n的素数——即,所有从2~n之间的素数。考虑从2~n的数的列表。2是第一个素数,但是2的倍数(4,6,8,…)不是,所以它们被从这个列表中划去。2之后第一个没有被划去的数是3,这是下一个素数。接着我们从列表中划去所有比3大的3的倍数(6,9,12,…)。下一个没有被划去的数是5,这又是下一个素数,我们划去所有比5大的5的倍数(10,15,20,…)。重复这个过程,直到我们到达列表中第一个其平方大于n但是又没有被划去的数。列表中剩余的数就是从2~n之间的素数。编写一个程序,使用这种筛法和一个数组找出从2~n之间的所有素数。对于n=550和n=5500,分别执行这个程序。
C++实现:
#include <iostream>
#define CAPACITY 550 /*把这个数改成5500就能找出2~5500之间的素数*/
using namespace std;
void main() {
/*利用布尔类型的数组,当primeNumber[i]的值是false时,代表i是素数,初始时默认数组中所有元素的值都为false——即都是素数,随着
程序运行,逐渐排除,若i不是素数,则将primeNumber[i]设为true
*/
bool primeNumber[CAPACITY + 1] = {0}; /*当数组容量为551时,数组的最大索引是550,这样不会导致索引越界*/
int index = 2;
/*index从2开始,知道index的平方大于CAPACITY*/
while (index*index <= CAPACITY) {
for (int i = index + index; i <= CAPACITY; i += index) {
if (!primeNumber[i]) {
primeNumber[i] = true;
}
}
index++;
}
/*primeNumber[2]开始从遍历数组,当primeNumber[i]为false时,说明i是
素数,则输出i
*/
for (int i = 2; i <= CAPACITY; i++) {
if (!primeNumber[i]) {
cout << i << "\t";
}
}
system("pause");
}