详解-归并排序(Mergesort)-C语言Python递归实现

写在最前

昨天总结了快速排序作为一名自律的“撰笔人”(误),昨天说今天写总结归并排序的文章绝对不鸽(狗头)。

归并排序(Mergesort)

归并排序,跟昨天介绍的快速排序同样都是基于分治(divide and conquer)的思想创建在归并操作(merge)上的一种排序方法。所谓归并操作,是指将两个已经排序好的序列合并成一个序列的操作。因此,基于分治法的思想和归并操作,归并排序的具体步骤如下。

递归法步骤:

  1. 将 待排序序列分成两个子序列,申请两个大小为两个子序列大小的空间,用来存储两个子序列。
  2. 分配两个指针LR,最初位置分别指向两个已经排序好的序列的起始位置。再分配一个指针list,指向待排序序列的起始位置。
  3. 比较两指针指向位置的元素大小,将较小的元素放置待排序序列起始位置,相应指针位置加一(若L指向元素小,则Llist加一,否则Rlist加一)。
  4. 重复步骤3直到子序列的两指针之一到达序列尾。
  5. 将未到尾部序列剩下的元素直接从list当前位置起全部赋给待排序序列。

排序步骤的图示如下:

假设待排序序列为 [ 3 , 5 , 9 , 6 , 2 , 8 , 2 , 6 ] [3,5,9,6,2,8,2,6] [3,5,9,6,2,8,2,6]

过程如下:

完整的代码如下:
C语言版:

#include <stdio.h>
#include <stdlib.h>

void merge(int nums[], int low, int mid, int high);
void mergeSort(int nums[], int low, int high);

int main(){
    int nums[8] = {3,5,9,6,2,8,2,6}; //待排序序列
    mergeSort(nums, 0, 8-1);
    for(int i=0; i<8; i++) //输出排序后的序列
        printf("%d ", nums[i]);
    printf("\n");
    return 0;
}

void merge(int nums[], int low, int mid, int high){
    int n_L, n_R, i, j, k;
    n_L = mid - low + 1; //子序列1的长度
    n_R = high - mid; //子序列2的长度
    int *nums_L = (int*)malloc(sizeof(int)*n_L);
    int *nums_R = (int*)malloc(sizeof(int)*n_R);
    for(i=0; i<n_L; i++) //将待排序序列的前半部分赋给子序列1
        nums_L[i] = nums[low+i];
    for(j=0; j<n_R; j++) //将待排序序列的后半部分赋给子序列2
        nums_R[j] = nums[mid+1+j];
    i = 0, j = 0, k = low;
    while(i < n_L && j < n_R) //两个指针指向两个子序列循环比较
        nums[k++] = nums_L[i] <= nums_R[j] ? nums_L[i++] : nums_R[j++];
    while(i < n_L) //将剩余元素全都赋给待排序序列
        nums[k++] = nums_L[i++];
    while(j < n_R)
        nums[k++] = nums_R[j++];
    free(nums_L);
    free(nums_R);
}

void mergeSort(int nums[], int low, int high){
    int mid;
    if(low < high){
        mid = (low + high) / 2; //均分待排序序列
        mergeSort(nums, low, mid); //排序前半部
        mergeSort(nums, mid+1, high); //排序后半部
        merge(nums, low, mid, high); //归并两个子序列
    }
}

Python3版:

class Solution:
    def merge(self, nums, low, mid, high):
        n_L = mid - low + 1 #子序列1的长度
        n_R = high - mid #子序列2的长度

        nums_L = [0] * n_L
        nums_R = [0] * n_R

        for i in range(n_L): #将待排序序列的前半部赋给子序列1
            nums_L[i] = nums[low+i]
        for j in range(n_R): #将待排序序列的后半部赋给子序列2
            nums_R[j] = nums[mid+1+j]

        i, j, k = 0, 0, low
        while i < n_L and j < n_R: #两个指针指向两个子序列循环比较大小
            if nums_L[i] < nums_R[j]:
                nums[k] = nums_L[i]
                i += 1
            else:
                nums[k] = nums_R[j]
                j += 1
            k += 1

        while i < n_L: #将剩余元素全部赋给待排序列
            nums[k] = nums_L[i]
            i += 1
            k += 1
        while j < n_R:
            nums[k] = nums_R[j]
            j += 1
            k += 1

    def mergeSort(self, nums, low, high):
        if low < high:
            mid = (high + low) // 2  #均分待排序序列
            self.mergeSort(nums, low, mid) #排序前半部
            self.mergeSort(nums, mid+1, high) #排序后半部
            self.merge(nums, low, mid, high) #归并两个子序列

        return nums
        
nums = [1,4,7,2,5,1,4,3,8,6] #待排序子序列

res = Solution().mergeSort(nums, 0, len(nums)-1)
print(res)

如果有哪里理解错的地方欢迎大家留言交流,如需转载请标明出处。

如果你没看懂一定是我讲的不好,欢迎留言,我继续努力。

手工码字码图码代码,如果有帮助到你的话留个赞吧,谢谢。

以上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值