题目来源:
中国大学MOOC-陈越、何钦铭-数据结构
题目详情:
给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
现给定两棵树,请你判断它们是否是同构的。
输入格式:
输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10)
,即该树的结点数(此时假设结点从0到N−1编号);随后N
行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”
。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。
输出格式:
如果两棵树是同构的,输出“Yes”
,否则输出“No”
。
输入样例1(对应图1):
8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -
输出样例1:
Yes
输入样例2(对应图2):
8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4
输出样例2:
No
解题思路:
题目要求是判断输入的两颗二叉树是否同构,但是从给出的输入样例来看,给定的输入并不一定是按照树的从上至下,从左至右的顺序输入的,可以是无序的,因此解决本题有三个大的步骤:
- 表示二叉树
- 创建二叉树
- 判断是否同构
接下来便一步一步的分析。
- 表示二叉树
二叉树的常用表示方法是用动态链表来表示,如下图:
value代表该节点的值,left和right为指向左子树和右子树的指针。
但是除此之外二叉树还有一种表示方法,那就是静态链表。所谓静态链表,,就是用数组来实现链式存储结构。对于本题这种树的结点数已经确定,输入是可以无序的情况十分使用,拿图1中输入的第一颗树来举例,相应的静态链表如下图:
其中最上面的一排代表数组的下标,left
代表该结点对应左子树结点在数组中的下标,right
代表该结点对应右子树结点在数组中的下标。-1
代表相应的子树为空。
用该方法的一个好处就是可以很容易地从无序的输入确定根节点是谁。可以发现,该数组的长度为8,因此下标是0~7,从头遍历图中数组&