机器学习
Young__Fan
学习,记录,分享,持之以恒
展开
-
PCA-主成分分析
图文并茂的PCA教程:https://blog.csdn.net/hustqb/article/details/78394058转载 2018-12-26 16:33:11 · 347 阅读 · 0 评论 -
HOG+SVM参考资料
利用Hog特征和SVM分类器进行行人检测:https://blog.csdn.net/qq_26898461/article/details/46786033梯度方向直方图Histogram of Oriented Gradients (HOG):https://blog.csdn.net/sinat_34474705/article/details/80219617利用hog+svm(梯...转载 2018-12-14 11:25:05 · 4598 阅读 · 0 评论 -
支持向量机通俗导论(理解SVM的三层境界)
https://blog.csdn.net/v_july_v/article/details/7624837转载 2018-12-20 20:00:28 · 263 阅读 · 0 评论 -
召回率、准确率与精确率
https://blog.csdn.net/sarah98/article/details/78282068https://blog.csdn.net/xwd18280820053/article/details/70674256原创 2018-12-20 20:33:33 · 500 阅读 · 0 评论 -
SVM超平面
应用在SVM的是仿射超平面。仿射超平面可以不通过原点。(1)b 是一个实数,代表超平面到原点的距离。(2)超平面一定过原点 。(1)和(2)自相矛盾,都必过原点了,还有什么到原点的距离,b=0,必过原点,b不等于0时,肯定不过原点。 真实情况:应用在SVM的是仿射超平面。仿射超平面可以不通过原点。参考:https://blog.csdn.net/dengheCSDN/article/det...原创 2018-12-27 09:39:59 · 858 阅读 · 0 评论 -
k近邻算法进行图片分类
K-近邻算法步骤:对于未知类别属性数据集中的点:计算已知类别数据集中的点与当前点的距离 按照距离依次排序 选取与当前点距离最小的K个点 确定前K个点所在类别的出现概率 返回前K个点出现频率最高的类别作为当前点预测分类。概述:KNN 算法本身简单有效,它是一种 lazy-learning 算法。 分类器不需要使用训练集进行训练,训练时间复杂度为0。 KNN 分类的计...转载 2019-01-23 16:32:27 · 1362 阅读 · 0 评论 -
方向导数与梯度
方向导数是一个值,梯度是一个向量。方向导数顾名思义,方向导数就是某个方向上的导数。这里的方向什么是方向?这个方向是在二维的xy平面上的,而不是三维空间上的方向函数在这个方向上的图像:我们知道:函数的点在这个方向上也是有切线的,其切线的斜率就是方向导数:梯度很显然,点不止一个方向,而是都有方向:每个方向都是有方向导数的:...转载 2019-05-09 20:26:26 · 11507 阅读 · 0 评论