中国剩余定理CRT、高斯算法和RSA低加密指数广播攻击

12 篇文章 0 订阅
12 篇文章 0 订阅

这篇讨论一下中国剩余定理(Chinese Remainder Theorem),高斯算法(Gauss’s algorithm)解决同步线性同余(simultaneous linear congruences)的问题、简单的方法去解决小模数(small moduli)同余、RSA低加密指数广播攻击的原理(theorem to break the RSA algorithm when someone sends the same encrypted message to three recipients using the same exponent of e=3,又叫Johan Hastad广播攻击)

中国剩余定理 The Chinese Theorem

定理:有整数 n 1 , n 2 , ⋯   , n r n_1,n_2,\cdots,n_r n1,n2,,nr g c d ( n i , n j ) = 1 , 且 i ≠ j gcd(n_i,n_j)=1,且 i\neq j gcd(ni,nj)=1i=j,那么线性同余系统

x ≡ c 1 ( m o d   n 1 ) x\equiv c_1 (mod \ n_1) xc1(mod n1)

x ≡ c 2 ( m o d   n 2 ) x\equiv c_2 (mod \ n_2) xc2(mod n2)

x ≡ c 3 ( m o d   n 3 ) x\equiv c_3 (mod \ n_3) xc3(mod n3)

⋯ \cdots

x ≡ c r ( m o d   n r ) x\equiv c_r (mod \ n_r) xcr(mod nr)

定理说有唯一解,并不是说如何去求解。这个通常使用高斯算法(Gauss’s algorithm)。中国剩余定理更多的时候是用在对RSA算法进行提速。

中国剩余定理在《孙子算经》中的问题是:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?在现代数论种我们把它写成解同余问题。

x ≡ 2 ( m o d   3 ) x \equiv 2 (mod \ 3) x2(mod 3)

x ≡ 3 ( m o d   5 ) x \equiv 3 (mod \ 5) x3(mod 5)

x ≡ 2 ( m o d   7 ) x \equiv 2 (mod \ 7) x2(mod 7)

高斯算法 Gauss’s algorithm

算法:有 N = n 1 n 2 ⋯ n r N=n_1 n_2 \cdots n_r N=n1n2nr那么

x ≡ c 1 N 1 d 1 + c 2 N 2 d 2 + ⋯ + c r N r d r ( m o d   N ) x \equiv c_1 N_1 d_1 + c_2 N_2 d_2 + \cdots + c_r N_r dr (mod \ N) xc1N1d1+c2N2d2++crNrdr(mod N)

N i = N / n i 和 d i ≡ N i − 1 ( m o d   n i ) N_i = N/n_i 和 d_i \equiv N_i^{-1}(mod \ n_i) Ni=N/nidiNi1(mod ni)

《孙子算经》的例子

《孙子算经》上面原始的中国剩余定理的题目有:

n 1 = 3 , n 2 = 5 , n 3 = 7 n_1=3,n_2=5,n_3=7 n1=3,n2=5,n3=7

N = n 1 n 2 n 3 = 3 × 5 × 7 = 105 N=n_1n_2n_3 = 3 \times 5 \times 7 = 105 N=n1n2n3=3×5×7=105

c 1 = 2 , c 2 = 3 , c 3 = 2 c_1 = 2, c_2 = 3, c_3 = 2 c1=2,c2=3,c3=2

N 1 = N / n 1 = 105 ÷ 3 = 35   所 以 d 1 = 3 5 − 1 ( m o d   3 ) = 2 N_1 = N/n_1 = 105 \div 3 = 35 \ 所以 d_1=35^{-1} (mod \ 3) = 2 N1=N/n1=105÷3=35 d1=351(mod 3)=2

N 2 = N / n 2 = 105 ÷ 5 = 21   所 以 d 2 = 21 … … − 1 ( m o d   5 ) = 1 N_2 = N/n_2 = 105 \div 5 = 21 \ 所以 d_2= 21……{-1}(mod \ 5) = 1 N2=N/n2=105÷5=21 d2=211(mod 5)=1

N 3 = N / n 3 = 105 ÷ 7 = 15   所 以 d 3 = 1 5 − 1 ( m o d   7 ) = 1   因 此 N_3 = N/n_3 = 105 \div 7 = 15 \ 所以 d_3= 15^{-1}(mod \ 7) = 1 \ 因此 N3=N/n3=105÷7=15 d3=151(mod 7)=1 

x = ( 2 × 35 × 2 ) + ( 3 × 21 × 1 ) + ( 2 × 15 × 1 ) = 233 ≡ 23 ( m o d   105 ) x=(2 \times 35 \times 2)+(3 \times 21 \times 1)+(2 \times 15 \times 1)= 233 \equiv 23 (mod \ 105) x=(2×35×2)+(3×21×1)+(2×15×1)=23323(mod 105)

低加密指数广播攻击RSA Johan Hastad attack

Alice发送您相同的RSA加密消息m给三个接收方,使用了不同的模数 n 1 , n 2 , n 3 n_1,n_2,n_3 n1,n2,n3,这些模数互质,但是他们使用了相同的指数 e = 3 e=3 e=3。Eve恢复出了密文值 c 1 , c 2 , c 3 c_1,c_2,c_3 c1,c2,c3并且知道三个接收方的公钥 ( n , e = 3 ) (n, e=3) (n,e=3)。Eve是否可以在不分解模数的情况下,恢复出消息?

可以。Eve使用高斯算法可以找到解x,在$0 \le x \lt n_1 n_2 n_3 $范围内,

x ≡ c 1 ( m o d   n 1 ) x \equiv c_1 (mod \ n1) xc1(mod n1)

x ≡ c 2 ( m o d   n 2 ) x \equiv c_2 (mod \ n2) xc2(mod n2)

x ≡ c 3 ( m o d   n 3 ) x \equiv c_3 (mod \ n3) xc3(mod n3)

我们知道 m 3 < n 1 n 2 n 3 m^3 \lt n_1 n_2 n_3 m3<n1n2n3,因此可以得到, x = m 3 x=m^3 x=m3, m m m可以通过简单的对整数 x x x求立方根恢复出来。

例子

有三个接收方的公钥 ( 87 , 3 ) , ( 115 , 3 ) 和 ( 187 , 3 ) (87,3),(115,3)和(187,3) (87,3),(115,3)(187,3),我们知道 e = 3 e=3 e=3并且

n 1 = 29 × 3 = 87 , n 2 = 23 × 5 = 115 , n 3 = 17 ∗ 11 = 187 n_1=29 \times 3 = 87, n_2=23 \times 5= 115, n_3=17*11=187 n1=29×3=87,n2=23×5=115,n3=1711=187
(实际使用中,会使用更大的N,不可以分解)

Alice使用RSA算法加密消息 m = 10 m=10 m=10给三个接收方,如下:

$c_1=10^3 mod \ 87 = 43;c_2=10^3 mod \ 115=80;c_3= 10^3 mod \ 187=65 $

这三个密文值 c 1 , c 2 , c 3 c_1,c_2,c_3 c1,c2,c3被中间人Eve拦截,Eve知道公钥 ( n i , e ) (n_i, e) (ni,e)。她可以使用高斯算法如下:

N = n 1 n 2 n 3 = 87 × 115 × 187 = 1870935 N=n_1 n_2 n_3 = 87 \times 115 \times 187 = 1870935 N=n1n2n3=87×115×187=1870935

N 1 = N / n 1 = 115 × 187 = 21505 ; d 1 = 2050 5 − 1 ( m o d   87 ) = 49 N_1 = N/n_1 = 115 \times 187 = 21505; d_1= 20505^{-1}(mod \ 87) = 49 N1=N/n1=115×187=21505;d1=205051(mod 87)=49

N 2 = N / n 2 = 87 × 187 = 16269 ; d 2 = 1626 9 − 1 ( m o d   115 ) = 49 N_2 = N/n_2 = 87 \times 187 = 16269; d_2 = 16269^{-1} (mod \ 115)=49 N2=N/n2=87×187=16269;d2=162691(mod 115)=49

N 3 = N / n 3 = 87 × 115 = 10005 ; d 3 = 1000 5 − 1 ( m o d   187 ) = 2 N_3 = N/n_3 = 87 \times 115 = 10005; d_3 = 10005^{-1}(mod \ 187) = 2 N3=N/n3=87×115=10005;d3=100051(mod 187)=2

x ≡ c 1 N 1 d 1 + c 2 N 2 d 2 + c 3 N 3 d 3 ( m o d N ) x \equiv c_1 N_1 d_1 + c_2 N_2 d_2 +c_3 N_3 d_3 (mod N) xc1N1d1+c2N2d2+c3N3d3(modN)

x = ( 43 × 21505 × 49 ) + ( 80 × 16269 × 49 ) + ( 65 × 10005 × 2 ) = 110386165 ≡ 1000 ( m o d   1870935 ) x = (43 \times 21505 \times 49) + (80 \times 16269 \times 49) + (65 \times 10005 \times 2) = 110386165 \equiv 1000 (mod \ 1870935) x=(43×21505×49)+(80×16269×49)+(65×10005×2)=1103861651000(mod 1870935)

所以明文消息 m m m是1000的立方根, m = 10 m=10 m=10。所以Eve不需要对模数进行分解就可以恢复出明文消息。

如何防止以上的攻击

    1. 使用大指数,比如65537(0x10001)。这样使用上面的攻击方法将会变得很困难。
    1. 添加一些随机比特到消息中,至少64比特。确保每次消息加密都添加了不同的随机数。这种加盐的方法也可以防止许多其他的攻击。显然,接收方也需要知道如何在解密后去除填充的随机数。
  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是Python语言的代码实现: 1. RSA算法 加密: ```python from Crypto.PublicKey import RSA from Crypto.Cipher import PKCS1_OAEP # 生成RSA公私钥 key = RSA.generate(2048) # 保存公私钥 private_key = key.export_key() public_key = key.publickey().export_key() # 使用公钥加密 cipher = PKCS1_OAEP.new(RSA.import_key(public_key)) ciphertext = cipher.encrypt(b'plaintext') ``` 解密: ```python from Crypto.PublicKey import RSA from Crypto.Cipher import PKCS1_OAEP # 使用私钥解密 cipher = PKCS1_OAEP.new(RSA.import_key(private_key)) plaintext = cipher.decrypt(ciphertext) ``` 2. 模重复平方算法 ```python def mod_exp(base, exponent, modulus): result = 1 while exponent > 0: if exponent % 2 == 1: result = (result * base) % modulus exponent //= 2 base = (base * base) % modulus return result ``` 3. 蒙哥马利算法 ```python def montgomery_reduction(x, r, n, n_inv): # Step 1 m = (x * r) % n # Step 2 t = (x + m * n) * n_inv % r # Step 3 if t >= r: return t - r else: return t def mod_exp_montgomery(base, exponent, modulus): # Step 1 r = 1 while r < modulus: r <<= 1 # Step 2 n_inv = pow(modulus, -1, r) # Step 3 base = (base * r) % modulus # Step 4 x = r % modulus for i in reversed(bin(exponent)[2:]): if i == '1': x = montgomery_reduction(x * base, r, modulus, n_inv) base = montgomery_reduction(base * base, r, modulus, n_inv) # Step 5 return montgomery_reduction(x, r, modulus, n_inv) ``` 4. 中国剩余定理 ```python def chinese_remainder_theorem(c, n): # Step 1 N = 1 for ni in n: N *= ni # Step 2 x = 0 for ni, ci in zip(n, c): Ni = N // ni Mi = pow(Ni, -1, ni) x += ci * Ni * Mi # Step 3 return x % N ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值