年前就被同事撺掇着转了型,从一个专注GIS相关学术研究的doc转型具有工程思维的programmer,现在的发展路线是自然语言处理方向的深度学习算法工程师。
2月3日上班以来,用python实现了一个文本结构化提取的实践案例,期间零散学习了各种python编程、神经网络基础、深度学习框架等等,算是简单入了门,尤其是CNN,不同渠道看了N遍哈哈。
因为疫情,很多网课都开放了免费课程,抓紧时间上车!总结一下,目前赶紧上手主要是这几个方面
1、Python学习:过了小白阶段,现在基本的已经上手,逐渐向中高阶过渡
2、理论算法学习(数学基础、算法基础):这部分以前有基础,但实践较少,可以边练边巩固
3、深度学习框架学习:tensorflow目前正在上一个网课,之前通过tf.keras简单入了门,感觉用keras入门还是不错的,至少笑着进去。百度的paddle还没有试过,将来可以尝试。以后就以这仨作为框架学习DL
4、机器学习实战:微软网站上有一些案例,可以练习
5、深度学习实战:NLP方向的挺多的,不同框架的案例也有不少,还有结合买的tensorflow的书
路漫漫其修远兮,吾将上下而求索......
最后推荐一下这个人写的零基础入门深度学习,讲的非常好,理解起来太清楚了: