「leetcode」538.把二叉搜索树转换为累加树【递归】【迭代】详解

本文 https://github.com/youngyangyang04/leetcode-master 已经收录,里面还有leetcode刷题攻略、各个类型经典题目刷题顺序、思维导图,可以fork到自己仓库,有空看一看一定会有所收获,如果对你有帮助也给一个star支持一下吧!

538.把二叉搜索树转换为累加树

题目链接:https://leetcode-cn.com/problems/convert-bst-to-greater-tree/

给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。

提醒一下,二叉搜索树满足下列约束条件:

节点的左子树仅包含键 小于 节点键的节点。
节点的右子树仅包含键 大于 节点键的节点。
左右子树也必须是二叉搜索树。

示例 1:

538.把二叉搜索树转换为累加树

输入:[4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
输出:[30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]

示例 2:
输入:root = [0,null,1]
输出:[1,null,1]

示例 3:
输入:root = [1,0,2]
输出:[3,3,2]

示例 4:
输入:root = [3,2,4,1]
输出:[7,9,4,10]

提示:

  • 树中的节点数介于 0 和 104 之间。
  • 每个节点的值介于 -104 和 104 之间。
  • 树中的所有值 互不相同 。
  • 给定的树为二叉搜索树。

思路

一看到累加树,相信很多小伙伴都会疑惑:如何累加?遇到一个节点,然后在遍历其他节点累加?怎么一想这么麻烦呢。

然后再发现这是一颗二叉搜索树,二叉搜索树啊,这是有序的啊。

那么有序的元素如果求累加呢?

其实这就是一棵树,大家可能看起来有点别扭,换一个角度来看,这就是一个有序数组[2, 5, 13],求从后到前的累加数组,也就是[20, 18, 13],是不是感觉这就简单了。

为什么变成数组就是感觉简单了呢?

因为数组大家都知道怎么遍历啊,从后向前,挨个累加就完事了,这换成了二叉搜索树,看起来就别扭了一些是不是。

那么知道如何遍历这个二叉树,也就迎刃而解了,从树中可以看出累加的顺序是右中左,所以我们需要反中序遍历这个二叉树,然后顺序累加就可以了

递归

遍历顺序如图所示:

在这里插入图片描述

本题依然需要一个pre指针记录当前遍历节点cur的前一个节点,这样才方便做累加。

pre指针的使用技巧,我们在二叉树:搜索树的最小绝对差二叉树:我的众数是多少?都提到了,这是常用的操作手段。

  • 递归函数参数以及返回值

这里很明确了,不需要递归函数的返回值做什么操作了,要遍历整棵树。

同时需要定义一个全局变量pre,用来保存cur节点的前一个节点的数值,定义为int型就可以了。

代码如下:

int pre; // 记录前一个节点的数值
void traversal(TreeNode* cur) 
  • 确定终止条件

遇空就终止。

if (cur == NULL) return;
  • 确定单层递归的逻辑

注意要右中左来遍历二叉树, 中节点的处理逻辑就是让cur的数值加上前一个节点的数值。

代码如下:

traversal(cur->right);  // 右
cur->val += pre;        // 中
pre = cur->val;
traversal(cur->left);   // 左

递归法整体代码如下:

class Solution {
private:
    int pre; // 记录前一个节点的数值
    void traversal(TreeNode* cur) { // 右中左遍历
        if (cur == NULL) return;
        traversal(cur->right);
        cur->val += pre;
        pre = cur->val;
        traversal(cur->left);
    }
public:
    TreeNode* convertBST(TreeNode* root) {
        pre = 0;
        traversal(root);
        return root;
    }
};

迭代法

迭代法其实就是中序模板题了,在二叉树:前中后序迭代法二叉树:前中后序统一方式迭代法可以选一种自己习惯的写法。

这里我给出其中的一种,代码如下:

class Solution {
private:
    int pre; // 记录前一个节点的数值
    void traversal(TreeNode* root) {
        stack<TreeNode*> st;
        TreeNode* cur = root;
        while (cur != NULL || !st.empty()) {
            if (cur != NULL) {
                st.push(cur);
                cur = cur->right;   // 右
            } else {
                cur = st.top();     // 中
                st.pop();
                cur->val += pre;
                pre = cur->val;
                cur = cur->left;    // 左
            }
        }
    }
public:
    TreeNode* convertBST(TreeNode* root) {
        pre = 0;
        traversal(root);
        return root;
    }
};

总结

经历了前面各种二叉树增删改查的洗礼之后,这道题目应该比较简单了。

好了,二叉树已经接近尾声了,接下来就是要对二叉树来一个大总结了

我是程序员Carl,利用工作之余重刷leetcode,更多精彩算法文章尽在:代码随想录,关注后,回复「Java」「C++」「python」「简历模板」等等,有我整理多年的学习资料,可以加我微信,备注「简单自我介绍」+「组队刷题」,拉你进入刷题群(无任何广告,纯个人分享),每天一道经典题目分析,我选的每一道题目都不是孤立的,而是由浅入深一脉相承的,如果跟住节奏每篇连续着看,定会融会贯通。

以下资料希望对你有帮助:

如果感觉题解对你有帮助,不要吝啬给一个👍吧!

状显示二叉树: 编写函数displaytree(二叉树的根指针,数据值宽度,屏幕的宽度)输出的直观示意图。输出的二叉树是垂直打印的,同层的节点在同一行上。 [问题描述] 假设数据宽度datawidth=2,而屏幕宽度screenwidth为64=26,假设节点的输出位置用 (层号,须打印的空格数)来界定。 第0层:根在(0,32)处输出; 第1层:因为根节点缩进了32个空格,所以下一层的偏移量(offset)为32/2=16=screenwidth/22。即第一层的两个节点的位置为(1,32-offset),(1,32+offset)即(1,16),(1,48)。 第二层:第二层的偏移量offset为screenwidth/23。第二层的四个节点的位置 分别是(2,16-offset),(2,16+offset),(2,48-offset),(2,48+offset)即(2,8),(2,24),(2,40),(2,56)。 …… 第i层:第i层的偏移量offset为screenwidth/2i+1。第i层的每个节点的位置是访问第i-1层其双亲节点时确定的。假设其双亲的位置为(i-1,parentpos)。若其第i层的节点是其左孩子,那末左孩子的位置是(i,parentpos-offset),右孩子的位置是(i,parentpos+offset)。 [实现提示] 利用二叉树的层次遍历算法实现。利用两个队列Q,QI。队列Q中存放节点信息,队列QI中存相应于队列Q中的节点的位置信息,包括层号和需要打印节点值时需要打印的空格数。当节点被加入到Q时,相应的打印信息被存到QI中。二叉树本身采用二叉链表存储。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码随想录

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值