http://www.cnblogs.com/daijinqiao/p/3352893.html
PS:对于这种作者,孤只想默默点个赞
-
题目描述:
给定一个包含n个整数的数组,除了一个数出现一次外所有的整数均出现三次,找出这个只出现一次的整数。
题目来源: http://oj.leetcode.com/problems/single-number-ii/
题目分析: 对于除出现一次之外的所有的整数,其二进制表示中每一位1出现的次数是3的整数倍,将所有这些1清零,剩下的就是最终的数。 用ones记录到当前计算的变量为止,二进制1出现“1次”(mod 3 之后的 1)的数位。用twos记录到当前计算的变量为止,二进制1出现“2次”(mod 3 之后的 2)的数位。当ones和twos中的某一位同时为1时表示二进制1出现3次,此时需要清零。即 用二进制模拟三进制计算。最终ones记录的是最终结果。 时间复杂度:O(n) 示例代码:
int singleNumber(int A[], int n) { int ones = 0, twos = 0, xthrees = 0; for(int i = 0; i < n; ++i) { twos |= (ones & A[i]); ones ^= A[i]; xthrees = ~(ones & twos); ones &= xthrees; twos &= xthrees; } return ones; }
扩展一:
给定一个包含n个整数的数组,除了一个数出现二次外所有的整数均出现三次,找出这个只出现二次的整数。ones记录1出现一次的数,twos记录1出现2次的数,容易知道twos记录的即是最终结果。
扩展二:
给定一个包含n个整数的数组,有一个整数x出现b次,一个整数y出现c次,其他所有的数均出现a次,其中b和c均不是a的倍数,找出x和y。使用二进制模拟a进制,累计二进制位1出现的次数,当次数达到a时,对其清零,这样可以得到b mod a次x,c mod a次y的累加。遍历剩余结果(用ones、twos、fours...变量表示)中每一位二进制位1出现的次数,如果次数为b mod a 或者 c mod a,可以说明x和y的当前二进制位不同(一个为0,另一个为1),据此二进制位将原数组分成两组,一组该二进制位为1,另一组该二进制位为0。这样问题变成“除了一个整数出现a1次(a1 = b 或 a1 = c)外所有的整数均出现a次”,使用和上面相同的方式计算就可以得到最终结果,假设模拟a进制计算过程中使用的变量为ones、twos、fours...那么最终结果可以用ones | twos | fours ...表示。