10.杨辉三角

10.杨辉三角

一、题目

给定一个非负整数 numRows,生成「杨辉三角」的前 numRows 行。
在「杨辉三角」中,每个数是它左上方和右上方的数的和。
链接:https://leetcode-cn.com/problems/pascals-triangle/solution/yang-hui-san-jiao-by-leetcode-solution-lew9/
来源:力扣(LeetCode)

二、示例

示例①

输入: numRows = 5
输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]

示例②

输入: numRows = 1
输出: [[1]]

三、代码实现

public static List<List<Integer>> generate(int numRows) {
            List<List<Integer>> ret = new ArrayList<List<Integer>>();
            for (int i = 0; i < numRows; ++i) {
                List<Integer> row = new ArrayList<Integer>();
                for (int j = 0; j <= i; ++j) {
                    if (j == 0 || j == i) {
                        row.add(1);
                    } else {
                        row.add(ret.get(i - 1).get(j - 1) + ret.get(i - 1).get(j));
                    }
                }
                ret.add(row);
            }
            return ret;
        }

有头绪懒得想直接cv

四、复杂度分析

  • 时间复杂度:O*(*numRows2)。
  • 空间复杂度:O(1)。不考虑返回值的空间占用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值