P1294 高手去散步 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)https://www.luogu.com.cn/problem/P1294
其实今天是想记录一下Djikstra的,然后打了太久的游戏,明天一定!!!
思路:用邻接矩阵记录边的权重,对每个点进行深搜,可以得到搜索树
就和使用深搜得到数字的全排列一个意思,额外多加一个变量temp用于记录从当前点出发的最大值。
temp=max(temp,sum);
将得到的路径与当前的值进行比较,例如路径:1->2->3的值与1->3->2的值进行比较 temp只保存最大值。
#include <iostream>
#include <math.h>
#include <string.h>
using namespace std;
//无向图
//邻接矩阵
int G[21][21];
int n,m;//点数和边数
int a,b,c;//起点 终点 权
int ans,temp;//记录最终答案
bool mark[30];//记录每个点
//传入参数为起点 总和
void dfs(int start,int sum){
temp=max(temp,sum);//保留这条路的最大值
/*遍历所有点 1作为起点
路径:
1 2 3 4
1 3 2 4
1 4 2 3
....
*/
for(int i=1;i<=n;i++){
if(G[start][i]!=0&&!mark[i]){
mark[i]=true;
dfs(i,sum+G[start][i]);
mark[i]=false;//当回溯时 取消标记
/*
(只有1 2 3结点)过程模拟:
当执行到层次3时,结束本次递归,返回到层次2的递归,取消标记3
层次2已经结束循环,取消标记2,返回到层次1,得到序列:1 2 3
层次1 循环执行到3 标记3 进入递归;1不符合条件,2符合条件,标记2,得到序列1 3 2
*/
}
}
return;
}
int main(){
cin>>n>>m;
for(int i=0;i<m;i++){
cin>>a>>b>>c;
//无向图 所以需要记录两次
G[a][b]=c;
G[b][a]=c;
}
//每个点都作为起点
for(int i=1;i<=n;i++){
mark[i]=true;//标记点
dfs(i,0);//当前点作为起始点 初始值为0
//最终答案
ans=max(ans,temp);
memset(mark,false,sizeof(mark));//将标记数组初始化
}
cout<<ans;
return 0;
}