洛谷P1294 高手去散步——DFS

P1294 高手去散步 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)icon-default.png?t=M3K6https://www.luogu.com.cn/problem/P1294

其实今天是想记录一下Djikstra的,然后打了太久的游戏,明天一定!!!

思路:用邻接矩阵记录边的权重,对每个点进行深搜,可以得到搜索树

就和使用深搜得到数字的全排列一个意思,额外多加一个变量temp用于记录从当前点出发的最大值。

temp=max(temp,sum);

将得到的路径与当前的值进行比较,例如路径:1->2->3的值与1->3->2的值进行比较 temp只保存最大值。

#include <iostream>
#include <math.h>
#include <string.h>
using namespace std;
//无向图
//邻接矩阵
int G[21][21];
int n,m;//点数和边数
int a,b,c;//起点 终点 权
int ans,temp;//记录最终答案
bool mark[30];//记录每个点
//传入参数为起点 总和
void dfs(int start,int sum){
    temp=max(temp,sum);//保留这条路的最大值 
    /*遍历所有点 1作为起点 
    路径:
    1 2 3 4
    1 3 2 4
    1 4 2 3
    ....
    */
    for(int i=1;i<=n;i++){
        if(G[start][i]!=0&&!mark[i]){
            mark[i]=true;
            dfs(i,sum+G[start][i]);
            mark[i]=false;//当回溯时 取消标记
            /*
            (只有1 2 3结点)过程模拟:
            当执行到层次3时,结束本次递归,返回到层次2的递归,取消标记3
            层次2已经结束循环,取消标记2,返回到层次1,得到序列:1 2 3
            
            层次1 循环执行到3 标记3 进入递归;1不符合条件,2符合条件,标记2,得到序列1 3 2
            */
        }
    }
    return;
}
int main(){
    cin>>n>>m;
    for(int i=0;i<m;i++){
        cin>>a>>b>>c;
        //无向图 所以需要记录两次
        G[a][b]=c;
        G[b][a]=c;
    }
    //每个点都作为起点
    for(int i=1;i<=n;i++){
        mark[i]=true;//标记点
        dfs(i,0);//当前点作为起始点 初始值为0
        //最终答案
        ans=max(ans,temp);
        memset(mark,false,sizeof(mark));//将标记数组初始化
    }
    cout<<ans;
    return 0;

}

DFS深度优先搜索)可以用于解决迷宫出口问题。 首先,我们需要将迷宫转化为图,其中每个房间是图中的一个节点,每个房间之间的通道是图中的一条边。我们可以用一个二维数组来表示迷宫,其中0表示墙,1表示通道。 然后,我们可以使用DFS来搜索迷宫。我们从起点开始探索,每次选择一个未被访问的相邻节点进行探索,直到找到出口为止。为了避免陷入死循环,我们需要记录已经访问过的节点。 具体实现可以使用递归或者栈来实现DFS,以下是一个使用递归的示例代码(假设起点为(0,0),出口为(n-1,m-1)): ```python def dfs(x, y, visited, maze): # 判断当前节点是否为出口 if x == len(maze)-1 and y == len(maze[0])-1: return True # 标记当前节点已被访问 visited[x][y] = True # 搜索相邻节点 for dx, dy in [(0,1), (0,-1), (1,0), (-1,0)]: nx, ny = x+dx, y+dy # 判断相邻节点是否合法 if 0 <= nx < len(maze) and 0 <= ny < len(maze[0]) and maze[nx][ny] == 1 and not visited[nx][ny]: # 递归搜索相邻节点 if dfs(nx, ny, visited, maze): return True return False # 测试 maze = [ [1, 0, 1, 1, 1], [1, 0, 1, 0, 1], [1, 0, 1, 0, 1], [1, 1, 1, 0, 1], [0, 0, 0, 0, 1] ] visited = [[False for _ in range(len(maze[0]))] for _ in range(len(maze))] print(dfs(0, 0, visited, maze)) # 输出True,表示存在从起点到出口的路径 ``` 这段代码中,dfs函数的参数分别表示当前搜索的节点坐标、已经访问过的节点、迷宫的二维数组。搜索过程中,我们先判断当前节点是否为出口,如果是,则返回True。然后标记当前节点已被访问,并搜索相邻节点,如果找到了一个相邻节点可以到达出口,则返回True。否则,返回False表示无法到达出口。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值