AI大模型开发工程师之路:从零到一的进阶指南

  当前最热门的技术无疑是AI大模型。虽然它的应用前景广阔,但真正精通大模型技术的人还不多。然而,市场对大模型的需求却在不断增长,吸引了不少开发者想要转行进入这个领域。然而,面对新技术,许多人心中充满疑虑,担心自己无法掌握。笔者也是充满疑虑,然后直到我看到这本书籍,感觉受益匪浅,给与了很多指导和引路,先分享给大家,也希望可以帮助更多的小伙伴。一起开启大模型之路。加油加油加油!!!

目录

1. 大模型开发知识储备

2. 转行注意事项

3. 转型指南

4. 书籍脉络

5. 书籍案例

6. 书籍目录


1. 大模型开发知识储备

        要做大模型应用开发工程师,首先得会编程,Python是必备的,因为几乎所有的机器学习框架都支持它。虽然你不一定非得精通多种语言,但了解点Java或者Python之类的也有帮助,项目需要时可能用得上。
然后就是机器学习和深度学习的基础。你得知道这些模型是怎么训练、调优的,比如理解一下像Transformer这样的模型。常用的工具像TensorFlow、PyTorch,这些你得熟悉。
数据处理也是绕不开的。模型都是建立在数据之上的,怎么清理数据、做特征工程这些都很重要
软件开发的经验也是少不了的。像Git版本控制、写单元测试、设计系统架构,这些都是日常开发中的基本操作。你不光要会写代码,还得知道怎么把代码整合到一个完整的系统里,保证它能跑得流畅,还能扩展。
现在很多大模型都是跑在云平台上的,所以你还得会用阿里云、华为云 之类的云服务。另外,学会用Docker和Kubernetes做容器化,这样部署模型的时候更方便。
还有一点,虽然技术很重要,但沟通能力也不能忽视。开发大模型通常是个团队合作的事,跟队友、产品经理甚至客户对接时,能清楚表达需求和想法,项目才能顺利进行。

2. 转行注意事项

要转行做大模型应用开发工程师,其实就是一个不断学习和积累经验的过程。首先,编程是基础,尤其是Python,这在AI和数据科学领域用得特别多。你可以通过在线课程、书籍,甚至加入一些编程小组来学习。如果数学基础不太好,像统计学、线性代数、微积分这些也得补一下,因为理解机器学习算法离不开这些工具。
接下来,你得深入学习机器学习和深度学习。最关键的是,光看书不行,得动手做。可以通过个人项目或者参与开源项目来实际操作,项目经验对求职特别重要。
然后你还得学会数据处理,因为机器学习的核心就是数据。学会用Python的Pandas和NumPy库做数据清洗、处理非常关键。
软件开发经验也是不可少的。学会使用Git做版本控制,毕竟开发中用得很多。还要了解一点软件工程的概念,比如敏捷开发流程,项目管理工具像JIRA、Confluence这些也很有用。
云计算和容器技术方面,也需要你熟悉。像华为云、阿里云这些云平台基本上是必备技能,学会在上面部署和管理模型。再加上Docker和Kubernetes,这些容器化技术能让你更轻松地在不同环境中部署应用。
转行过程中,建立人脉和专业网络也挺重要的。多参加一些行业的会议、研讨会,线上讲座什么的,这样你既能了解最新趋势,又能结识一些同行。同时,你还可以把自己的项目和技能展示在脉脉、GitHub等平台,积极跟行业里的人交流,有助于打开机会之门。
最后,别忘了多找实习和入门级的工作机会。实习是积,因为这可以让你快速上手、了解行业的实际需求。

3. 转型指南

《AI大模型开发之路》非常适合那些想要转型成为AI大模型应用开发工程师的读者。它的内容

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值