夏绿
码龄9年
求更新 关注
提问 私信
  • 博客:31,367
    31,367
    总访问量
  • 12
    原创
  • 4
    粉丝
  • 7
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
加入CSDN时间: 2016-02-29

个人简介:非我无酒,以敖以游

博客简介:

youyinyou的博客

查看详细资料
个人成就
  • 获得11次点赞
  • 内容获得1次评论
  • 获得43次收藏
创作历程
  • 1篇
    2018年
  • 11篇
    2017年
TA的专栏
  • 机器学习
    5篇
  • numpy
    1篇
  • 图像手绘
    1篇
  • python
    5篇
  • 开发工具
    1篇
  • 正则表达式
    1篇
  • 网络爬虫
    3篇
  • request库
    1篇
  • Beautiful Soup
    1篇
  • Scrapy
    1篇
  • 降维
    2篇
  • PCA
    1篇
  • 图像分割
    1篇
  • 聚类
    1篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

创作活动更多

开源数据库 KWDB 社区征文大赛,赢取千元创作基金!

提交参赛作品,有机会冲刺至高2000元的创作基金,快来参与吧!

去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

Python踩坑笔记

1、    bug:  python "Missing dependencies for SOCKS support"    reason: 使用了代理,然而 Python 当前的包没有支持 socks 代理的。    solution: 用 http 代理,而不是 socks 代理:export ALL_PROXY=https://127.0.0.1:1087...
原创
发布博客 2018.06.27 ·
781 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

数据降维笔记——非负矩阵分解(NMF),人脸数据特征提取

数据降维——非负矩阵分解(NMF)Non-negative Matrix Factorization,实在矩阵中所有元素均为非负数约束条件之下的矩阵分解方法。NMF能够广泛应用于图像分析、文本挖掘和语音处理等领域。基本思想:给定一个非负矩阵V, NMF能够找到一个非负矩阵W和一个非负矩阵H,使得矩阵W和H的乘积近似等于矩阵V中的值。W矩阵:基
原创
发布博客 2017.09.21 ·
7119 阅读 ·
4 点赞 ·
0 评论 ·
22 收藏

K-means、图像分割

K-means聚类算法原理 k-means算法以k为参数,吧n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。随机选k个点作为初始的聚类中心。对剩下的点,根据距离,将其归入最近的簇。对每个簇,计算所有点的均值作为新的聚类中心。重复前两步,直到中心不再改变。参数:class sklearn.cluster.KMeans(n_clusters=8,in
原创
发布博客 2017.08.31 ·
3484 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

数据降维、PCA——基于鸢尾花数据集

主成分分析PCA主成分分析(Principal Component Analysis, PCA)主成分:可以把具有相关性的高纬度变量,合成为线性无关的低纬度变量,称为主成分。主成分能够尽可能保留原始数据的信息。方差(度量分散程度)协方差(度量两变量间的线性相关性,0,线性无关)特征向量:描述数据结构的非零向量。原理:矩阵的主成分就是其协方差矩阵对
原创
发布博客 2017.08.31 ·
9668 阅读 ·
1 点赞 ·
0 评论 ·
26 收藏

网络爬虫系列笔记(4)——Scrapy爬虫

Scrapy爬虫Scrapy不是一个简单的函数功能库;而是一个专业的网络爬虫框架Scrapy 足以支持一般商业服务所需的爬虫能力:持续爬取、商业服务、高可靠性scrapy库的安装:pip install scrapyscrapy -hAvailable commands:  bench         Run quick benchmark te
原创
发布博客 2017.08.31 ·
2003 阅读 ·
2 点赞 ·
1 评论 ·
4 收藏

网络爬虫系列笔记(3)——Beautiful Soup库

Unit1:Beautiful Soup        一、安装https://www.crummy.com/software/BeautifulSoup/管理员权限打开命令行:pip install beautifulsoup4(注意:使用pip install beautifulsoup 会失败) 安装测试:演示地址(http://python123
原创
发布博客 2017.08.31 ·
884 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

网络爬虫系列笔记(2)——Requests库

Unit 1 : Requests库入门 (7 * 13)(1)、安装 pip install requests     测试import requestsr = requests.get("http://www.baidu.com")r.status_code     200r.encoding = 'utf-8'r.text     #打印内
原创
发布博客 2017.08.31 ·
661 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

网络爬虫系列笔记(1)——Re库、正则表达式

Unit1 正则表达式 Re正则表达式:regular expression     regex     RE简洁的表达一组字符串的表达式,(查找,替换,匹配)。表达“特征”(病毒,入侵)使用:编译:将符合正则表达式的字符串'P(Y/YT/YTH)?N' 转换为正则表达式的特征。特征:p = re.compile('P(Y/YT/YTH)?N')语法:
原创
发布博客 2017.08.31 ·
415 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Anaconda IDE的基本使用

Anaconda来自于conda :一个包管理和环境管理工具 包管理和pip类似,管理Python第三方库环境管理能够允许用户使用不同版本Python,并能灵活转换。anaconda包括:一个集合,包括conda、某版本Python、一批第三方库等。一、安装下载:https://www.continuum.io/镜像下载地址:htttps://m
原创
发布博客 2017.08.31 ·
4206 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

数据分析(1):Numpy库与应用

Unit1、Numpy库入门一、数据的维度描述一组数据的方式1、一维数据:由对等关系的有序或无序数据构成,采用线性方式组织。          采用列表、数组、集合等描述     Python表示:列表和集合类型               列表:数据类型可以不同               数组:数据类型相同2、二维数据:由多个一维数据构成,一维数据的组合形式
原创
发布博客 2017.08.31 ·
802 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

数据分析与展示(3)-- Matplotlib库基础使用

Matplotlib库的使用一、用图表达数据Matplotlib.pyplot绘制图形的命令子库,相当于快捷方式。1、列表画图,并保存import matplotlib.pyplot as pltplt.plot([3, 1, 4, 2, 5])plt.ylabel("grade")plt.savefig('test', dpi=60
原创
发布博客 2017.08.31 ·
933 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

数据提取(2):pandas库入门

Pandas库http://pandas.pydata.orgPandas是Python第三方库,提供高性能易用数据类型和分析工具。import pandas as pd数据类型:Series, DataFrame基于数据类型的各类操作:基本操作、运算操作、特征类操作、关联类操作Numpy:     基础数据类型:ndarray;
原创
发布博客 2017.08.31 ·
410 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏