微积分-第6篇:方向导数与梯度下降——AI优化的“方向”选择

我将围绕方向导数与梯度下降,先阐述核心概念与数学推导,再通过代码实战演示,最后结合AI领域应用,呈现其在优化中的关键作用。

微积分-第6篇:方向导数与梯度下降——AI优化的“方向”选择

在人工智能的模型训练过程中,如何快速、准确地找到最优参数是核心挑战,而方向导数与梯度下降算法正是解决这一问题的关键。方向导数描述了函数在任意方向上的变化率,梯度则指明了函数增长最快的方向,基于此衍生出的梯度下降算法成为了AI优化的基石。本篇将深入解析方向导数与梯度下降的原理,结合实战代码与AI应用场景,揭示其在优化中的核心地位。

一、核心概念:方向导数与梯度的本质

1.1 方向导数:函数在任意方向的变化率

对于多元函数 z = f ( x , y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员勇哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值