微积分-第13篇:自动微分(AutoDiff)——AI框架的底层逻辑

微积分-第13篇:自动微分(AutoDiff)——AI框架的底层逻辑

在深度学习领域,模型训练的核心是通过计算梯度来更新参数,而自动微分(Automatic Differentiation,简称AutoDiff)正是实现高效梯度计算的关键技术。从PyTorch、TensorFlow等主流AI框架,到复杂神经网络的优化,自动微分贯穿其中,极大提升了深度学习的开发效率与训练性能。本文将深入解析自动微分的基本概念、实现原理,结合实战代码与AI框架应用,揭示其作为AI底层逻辑的重要地位。

一、核心概念:自动微分的定义与优势

1.1 自动微分的本质

自动微分是一种能够自动计算函数导数的技术,它结合了符号计算的精确性和数值计算的高效性。与手动推导导数公式(符号微分)、数值近似计算导数(如有限差分法)不同,自动微分通过对计算机程序的执行过程进行分析,利用微积分的链式法则,准确且高效地计算出函数对于所有自变量的导数。它能够将复杂的计算过程拆解为基本运算单元,通过对每个单元导数的计算与传递,实现整体函数导数的求解,避免了人为推导可能出现的错误以及数值计算中的误差累积问题。

1.2 自动微分的两种模

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员勇哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值