微积分-第13篇:自动微分(AutoDiff)——AI框架的底层逻辑
在深度学习领域,模型训练的核心是通过计算梯度来更新参数,而自动微分(Automatic Differentiation,简称AutoDiff)正是实现高效梯度计算的关键技术。从PyTorch、TensorFlow等主流AI框架,到复杂神经网络的优化,自动微分贯穿其中,极大提升了深度学习的开发效率与训练性能。本文将深入解析自动微分的基本概念、实现原理,结合实战代码与AI框架应用,揭示其作为AI底层逻辑的重要地位。
一、核心概念:自动微分的定义与优势
1.1 自动微分的本质
自动微分是一种能够自动计算函数导数的技术,它结合了符号计算的精确性和数值计算的高效性。与手动推导导数公式(符号微分)、数值近似计算导数(如有限差分法)不同,自动微分通过对计算机程序的执行过程进行分析,利用微积分的链式法则,准确且高效地计算出函数对于所有自变量的导数。它能够将复杂的计算过程拆解为基本运算单元,通过对每个单元导数的计算与传递,实现整体函数导数的求解,避免了人为推导可能出现的错误以及数值计算中的误差累积问题。