目录
题目
给定一组互不相同的单词,找出所有不同的索引对(i, j),使得列表中的两个单词,words[i] + words[j],可拼接成回文串。
示例 1:
输入:["abcd","dcba","lls","s","sssll"]
输出:[[0,1],[1,0],[3,2],[2,4]]
解释:可拼接成的回文串为 ["dcbaabcd","abcddcba","slls","llssssll"]
示例 2:
输入:["bat","tab","cat"]
输出:[[0,1],[1,0]]
解释:可拼接成的回文串为 ["battab","tabbat"]
同样是在力扣上刷到的题目,原题链接:回文对-力扣
思路
采用“暴力法”当然可解,但由于要遍历每一对字符串,需花费O(n²)时间,每次遍历都要检查拼接成的新字符串是否是“回文串”,需花费O(m)的时间,所以总的时间复杂度为O(m*n²),试过了,通不过,超时。
看了官方题解,掌握了大致思路,对于可以拼凑成“回文串”的两个字符串s1、s2(s1在左,s2在右)总共以下三种情况:
- s1的长度等于s2的长度,那么s1一定等于s2的翻转
- s1的长度大于s2的长度,那么在s1的右边一定存在一个“回文串”,并且左边部分是s2的翻转
- s1的长度小于s2的长度,那么在s2的左边一定存在一个“回文串”,并且右边部分是s1的翻转
2和3其实可以归为一种,在实际操作过程中,我们要频繁地判断某个字符串的翻转是否存在输入中,为了方便,我们建立一个字典来保存诸如:原字符串的翻转:对应的索引 这样的键值对。在判断某个字符串是否可以与其他字符串构成“回文对”时,我们只考虑这个字符串更长或者一样长的情况,它可以在左边也可以在右边,由于我们会遍历每一个字符串,所以这样并不会出现漏掉或者重复的情况。
代码
Python版本:
class Solution:
def palindromePairs(self, words: List[str]) -> List[List[int]]:
results = []
words_dict = {word[::-1]:i for i, word in enumerate(words)} # 存储翻转的字符串
for i, word in enumerate(words):
if word in words_dict: # 长度相等
if words_dict[word] != i:
results.append([i, words_dict[word]])
n = len(word)
for k in range(0, n):
sub = word[k:] # 在左边
if sub == sub[::-1]: # 判断是否回文
if word[:k] in words_dict:
if words_dict[word[:k]] != i:
results.append([i, words_dict[word[:k]]])
sub = word[:k+1] # 在右边
if sub == sub[::-1]:
if word[k+1:] in words_dict:
if words_dict[word[k+1:]] != i:
results.append([words_dict[word[k+1:]], i])
return results
分析时间复杂度:遍历每个字符串O(n),分割子串O(m),判断每个子串是否回文O(m),所以总的时间复杂度为O(n*m²)。