【百度面试官整理】Java大厂必面-Redis数据库,一篇通解

Redis数据库.

1.Redis 简介

主流应用架构

主流应用架构

缓存中间件 —— Memcache和Redis的区别

  • Memcache:代码层次类似Hash
    • 支持简单数据类型
    • 不支持数据持久化存储
    • 不支持主从
    • 不支持分片
  • Redis
    • 数据类型丰富
    • 支持数据磁盘持久化存储
    • 支持主从
    • 支持分片

为什么Redis能这么快?

100000 + QPS(QPS每秒内查询次数)

  • 完全基于内存,绝大部分请求是纯粹的内存操作,执行效率高
  • 数据结构简单,对数据操作也简单
  • 采用单线程,单线程也能处理高并发请求,想多核也可启动多实例
  • 使用多路IO复用模型,非阻塞IO

多路IO复用模型

FD:File Descriptor,文件描述符

  • 一个打开的文件通过唯一的描述符进行引用,该描述符是打开文件的源数据到文件本身的映射

传统的阻塞IO模型

传统的IO阻塞模型

Select 系统调用

selewct系统调用

Redis采用的IO多路复用函数:epoll / kqueue / evport / select?

  • 因地制宜:根据平台的不同选用不同函数
  • 优先选择时间复杂度为O(1)的IO多路复用函数作为底层实现
  • 以时间复杂度为O(n)的select作为保底
  • 基于react设计模式监听IO事件

2.Redis常用数据类型

供用户使用的数据类型

  • String:最基本的数据类型,二进制安全(可以存储所有数据类型)

    String

  • Hash:String元素组成的字典,适合用于存储对象

  • List:列表,按照String元素插入顺序排序(后进先出,栈)

  • Set:String元素组成的无序集合,通过哈希表实现,不允许重复

  • Sorted Set:通过分数来为集合中的成员进行从小到大的排序

  • 用于技术的HyperLogLog,用于支持存储地理位置信息的Geo

底层数据类型基础

  • 简单动态字符串
  • 链表
  • 字典
  • 跳跃表
  • 整数集合
  • 压缩列表
  • 对象

3.从海量Key中查询出某一固定的前缀的Key

留意细节

  • 摸清数据规模,既问清楚边界

KEYS pattern :查找所有符合给定模式pattern的Key

缺点

  • Keys指令一次性返回所有匹配的Key
  • 键的数量过大会使服务卡顿

SCAN cursor [MATCH pattern] [COUNT count]

  • 基于游标的迭代器,需要基于上一次的游标延续之前的迭代过程
  • 以0作为游标开始一次新的迭代,直到命令范围游标0完成一次遍历
  • 不保证每次执行都会返回某个给定数量的元素,支持模糊查询
  • 一次返回的数量不可控,只能是大概率符合count参数
SCAN 0 match k1 count 10
-- 开始迭代,返回前缀为k1的key 期望一次返回十个
SCAN '上次迭代第一个数据' match k1 count 10
-- 需要对结果进行去重,使用hash set

4.Redis 分布式锁

如何通过Redis实现分布式锁

分布式锁需要解决的问题

  • 互斥性:任意时刻只能有一个客户端获取锁,不能同时有两个客户端获取到锁。
  • 安全性:锁只能被持有该锁的客户端删除,不能由其他客户端删除
  • 死锁:获取锁的客户端,因为某些原因宕机,而未能释放锁,其他客户端再也不能获取锁,导致死锁。
  • 容错:如部分redis节点宕机时,客户端仍然能够获取锁,和释放锁。

SETNX key value :如果key不存在,则创建并赋值

  • 时间复杂度:O(1)
  • 返回值:设置成功,返回1 ;设置失败,返回0。

实现逻辑

当前线程尝试设置一个特定的键(例如,SETNX 命令),表示获取了该资源的锁。
如果设置成功(返回值为 1),则表示当前线程成功获取了锁,可以执行代码逻辑。
如果设置失败(返回值为 0),则表示当前资源已被其他线程占用,当前线程需要等待一段时间后重试,或者采取一定的重试策略(例如指数退避),直至成功获取锁。

如何解决SETNX长期有效的问题?

EXPIRE key seconds

  • 设置key的生存时间,当key过期时(生存时间为0),会被自动删除

  • 缺点:原子性得不到满足

    解决setnx长期有效

SET key value [EX seconds] [PX milliseconds] [NX] [XX]

  • EX second:设置键的过期时间为second 秒
  • PX millisecond : 设置键的过期时间为Millisecond 毫秒
  • NX:只在键不存在时,才对键进行设置操作
  • XX:只在键已经存在时,才对键进行设置操作
  • SET操作成功完成时,返回OK,否则返回nil
set locktarget 12345 ex 10 nx 
-- 设置locktarget键 的值为12345 有效期为10s 只在键不存在时,才对键进行设置操作
set locktarget 1234 ex 10 nx
nil
-- 十秒之后会执行成功

位1

大量的key同时过期的注意事项?

集中过期,由于清除大量的key很耗时,会出现短暂的卡顿现象

  • 解决方案:在设置key的过期时间的时候,给每个key加上随机值

5.如何使用Redis做异步队列?

使用List作为队列,RPUSH上产消息,LPOP消费消息

  • 缺点:没有等待队列里有值就直接消费
  • 弥补:可以通过在应用层引入sleep机制去调用LPOP重试

弥补2:

BLPOP key [key …] timeout :阻塞直到队列有消息或者超时

blpop testlist 30    -- 没有消息时阻塞30秒
  • 缺点:只能提供一个消费者消费

解决:使用pub/sub:主题订阅者模式

  • 发送者(pub)发送消息,订阅者(sub)接收消息
  • 订阅者可以订阅任意数量的频道

pubsub

客户端1:subscribe myTopic --订阅myTopic频道
客户端2:subscribe myTopic --订阅myTopic频道
客户端3:subscribe anotherTopic --订阅另外一个频道
客户端4:publish myTopic 'hello' -- 客户端4发布myTopic消息 客户端1/2都能收到消息
客户端4:publish anotherTopic 'hello' -- 客户端4发布anotherTopic消息 客户端3收到消息

缺点:

  • 消息发布是无状态的,无法保证可达 ,解决需要用专业的消息队列解决

6.持久化方式之DBA

Redis如何做持久化?

RDB(快照)持久化:保存某个时间点的全量数据快照

持久化配置解析

redis.conf

save 900 1			--900秒内产生1次插入操作,生成一次快照
save 300 10			--300秒内产生10次插入操作,生成一次快照
save 60  10000		--60秒内产生10000次插入操作,生成一次快照
save ""			    --禁用RDB
RDB策略会将数据文件以 dump.rdb 文件的方式保存
stop - writes - on - bgsave - error yes -- 当复制进程出错的时候,主进程就停止写入操作
rdbcompression yes -- 在备份的时候需要将备份文件压缩后再保存

RDB文件生成

  • SAVE:阻塞Redis的服务进程,直到RDB文件被创建完成
  • BGSAVE:Fork出一个子进程来创建RDB文件,不阻塞服务器进程

自动化触发RDB持久化的方式

  • 根据redis.conf配置里的SAVE m n 定时触发(用的是BGSAVE)
  • 主从复制时,主节点自动触发BGSAVE
  • 执行Debug Reload 时
  • 执行Shutdown且没有开启AOF持久化

BGSAVE原理

BGSAVE

  • 系统调用fork():创建进程,实现了Copy - on - write(写时复制)

    Copy - on - write具体来说,当一个进程或线程尝试修改共享数据时,系统会首先检查是否有其他进程或线程也在使用相同的数据。如果是的话,系统会复制当前数据的副本,并让修改操作在副本上进行。这样,修改操作只影响到了当前进程或线程,而其他进程或线程继续共享原始数据。这种策略延迟了复制的时间,只有在确实需要时才执行,从而节省了内存和处理时间。
    

    RDB缺点:

    • 内存数据全量同步,数据量大会由于IO而严重影响性能
    • 可能会因为Redis挂掉而丢失从当前到最近一次快照期间的数据

7.持久化方式之AOF

AOF(Append-Only-File)持久化:保存写状态

  • 记录下除了查询以外的所有变更数据库状态的指令
  • 以append的形式追加保存到AOF文件中(增量)
redis.conf

appendonly yes --打开AOF持久化策略
appendfilename  "appendonly.aof" -- AOF文件名
appendfsync everysec --配置AOF文件的写入方式
参数:
everysec:每隔1秒就把缓存区的内容写入到文件里
always:一旦缓存区的内容发生变化,就把变化的内容写到AOF当中   
no:将写入AOF的方式交给操作系统决定
修改配置后要重启redis

日志重写解决AOF文件大小不断增大的问题,原理如下:

  • 调用fork()创建一个子进程
  • 子进程把新的AOF写到一个临时文件里,不依赖原来的AOF文件
  • 主进程持续将新的变动同事写到内存和原来的AOF里
  • 主进程获取子进程重写AOF的完成信号,往新AOF同步增量变动
  • 使用新的AOF文件替换掉旧的AOF文件

Redis数据的恢复

RDB和AOF文件共存情况下的恢复流程

数据恢复

RDB和AOF的优缺点

  • RDB优点:全量数据快照,文件小,恢复快
  • RDB缺点:无法保存最近一次快照之后的数据
  • AOF优点:可读性高,适合保存增量数据,数据不易丢失
  • AOF缺点:文件体积大,恢复时间长

RDB-AOF混合持久化方式(默认)

RDBAOF混合

  • BGSAVE做镜像全量持久化,AOF做增量持久化

8.Pipeline以及主从同步

使用Pipeline的好处

  • Pipeline和Linux的管道类似
  • Redis基于请求/响应模型,单个请求处理需要 一 一 应答
  • Pipeline批量执行指令,节省多次IO往返的时间
  • 有顺序依赖的指令建议分批发送

Redis的同步机制

主从同步原理

主从同步

全量同步过程

  • Salve发送sync命令到Master
  • Master启动一个后台进程,将Redis中的数据快照保存到文件中
  • Master将保存数据快照期间接收到的写命令缓存起来
  • Master完成写文件操作后,将改文件发送给Salve
  • 使用新的AOF文件替换掉旧的AOF文件
  • Master将这期间收集的增量写命令发送给Salve端

增量同步过程

  • Master接收到用户的操作指令,判断是否需要传播到Slave
  • 将操作记录追加到AOF文件中
  • 将操作传播到其他Slave:1、对齐主从库;2、往响应缓存写入指令
  • 将缓存中的数据发送给Slave

Redis Sentinel

解决主从同步Master宕机后的主从切换问题:

  • 监控:检查主从服务器是否运行正常
  • 提醒:通过API向管理员或者其他应用程序发送故障通知
  • 自动故障迁移:主从切换

流言协议:Gossip

在杂乱无章中寻求一致

  • 每个节点都随机地与对方通信,最终所有节点的状态达成一致
  • 种子节点定期随机向其他节点发送节点列表以及需要传播的消息
  • 不保证信息一定会传递给所有节点,但是最终会趋于一致

9.Redis集群

如何从海量数据里快速找到所需?

  • 分片:按照某种规则去划分数据,分散存储在多个节点上
  • 常规的按照哈希划分无法实现节点的动态增删

一致性哈希算法:对2 的32次幂取模,将哈希值空间组织称虚拟的圆环

一致性哈希算法

将数据Key使用相同的函数Hash计算处哈希值

一致性哈希值2

哈希3

Node C 宕机

哈希4

新增服务器Node X

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Hash环的数据倾斜问题

哈希倾斜

引入虚拟节点解决数据倾斜的问题

哈希虚拟

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

都叫我闫工

你的鼓励是我创作最大的动力!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值