Redis数据库.
文章目录
1.Redis 简介
主流应用架构
缓存中间件 —— Memcache和Redis的区别
- Memcache:代码层次类似Hash
- 支持简单数据类型
- 不支持数据持久化存储
- 不支持主从
- 不支持分片
- Redis
- 数据类型丰富
- 支持数据磁盘持久化存储
- 支持主从
- 支持分片
为什么Redis能这么快?
100000 + QPS(QPS每秒内查询次数)
- 完全基于内存,绝大部分请求是纯粹的内存操作,执行效率高
- 数据结构简单,对数据操作也简单
- 采用单线程,单线程也能处理高并发请求,想多核也可启动多实例
- 使用多路IO复用模型,非阻塞IO
多路IO复用模型
FD:File Descriptor,文件描述符
- 一个打开的文件通过唯一的描述符进行引用,该描述符是打开文件的源数据到文件本身的映射
传统的阻塞IO模型
Select 系统调用
Redis采用的IO多路复用函数:epoll / kqueue / evport / select?
- 因地制宜:根据平台的不同选用不同函数
- 优先选择时间复杂度为O(1)的IO多路复用函数作为底层实现
- 以时间复杂度为O(n)的select作为保底
- 基于react设计模式监听IO事件
2.Redis常用数据类型
供用户使用的数据类型
-
String:最基本的数据类型,二进制安全(可以存储所有数据类型)
-
Hash:String元素组成的字典,适合用于存储对象
-
List:列表,按照String元素插入顺序排序(后进先出,栈)
-
Set:String元素组成的无序集合,通过哈希表实现,不允许重复
-
Sorted Set:通过分数来为集合中的成员进行从小到大的排序
-
用于技术的HyperLogLog,用于支持存储地理位置信息的Geo
底层数据类型基础
- 简单动态字符串
- 链表
- 字典
- 跳跃表
- 整数集合
- 压缩列表
- 对象
3.从海量Key中查询出某一固定的前缀的Key
留意细节
- 摸清数据规模,既问清楚边界
KEYS pattern :查找所有符合给定模式pattern的Key
缺点
- Keys指令一次性返回所有匹配的Key
- 键的数量过大会使服务卡顿
SCAN cursor [MATCH pattern] [COUNT count]
- 基于游标的迭代器,需要基于上一次的游标延续之前的迭代过程
- 以0作为游标开始一次新的迭代,直到命令范围游标0完成一次遍历
- 不保证每次执行都会返回某个给定数量的元素,支持模糊查询
- 一次返回的数量不可控,只能是大概率符合count参数
SCAN 0 match k1 count 10
-- 开始迭代,返回前缀为k1的key 期望一次返回十个
SCAN '上次迭代第一个数据' match k1 count 10
-- 需要对结果进行去重,使用hash set
4.Redis 分布式锁
如何通过Redis实现分布式锁
分布式锁需要解决的问题
- 互斥性:任意时刻只能有一个客户端获取锁,不能同时有两个客户端获取到锁。
- 安全性:锁只能被持有该锁的客户端删除,不能由其他客户端删除
- 死锁:获取锁的客户端,因为某些原因宕机,而未能释放锁,其他客户端再也不能获取锁,导致死锁。
- 容错:如部分redis节点宕机时,客户端仍然能够获取锁,和释放锁。
SETNX key value :如果key不存在,则创建并赋值
- 时间复杂度:O(1)
- 返回值:设置成功,返回1 ;设置失败,返回0。
实现逻辑
当前线程尝试设置一个特定的键(例如,SETNX 命令),表示获取了该资源的锁。
如果设置成功(返回值为 1),则表示当前线程成功获取了锁,可以执行代码逻辑。
如果设置失败(返回值为 0),则表示当前资源已被其他线程占用,当前线程需要等待一段时间后重试,或者采取一定的重试策略(例如指数退避),直至成功获取锁。
如何解决SETNX长期有效的问题?
EXPIRE key seconds
-
设置key的生存时间,当key过期时(生存时间为0),会被自动删除
-
缺点:原子性得不到满足
SET key value [EX seconds] [PX milliseconds] [NX] [XX]
- EX second:设置键的过期时间为second 秒
- PX millisecond : 设置键的过期时间为Millisecond 毫秒
- NX:只在键不存在时,才对键进行设置操作
- XX:只在键已经存在时,才对键进行设置操作
- SET操作成功完成时,返回OK,否则返回nil
set locktarget 12345 ex 10 nx
-- 设置locktarget键 的值为12345 有效期为10s 只在键不存在时,才对键进行设置操作
set locktarget 1234 ex 10 nx
nil
-- 十秒之后会执行成功
大量的key同时过期的注意事项?
集中过期,由于清除大量的key很耗时,会出现短暂的卡顿现象
- 解决方案:在设置key的过期时间的时候,给每个key加上随机值
5.如何使用Redis做异步队列?
使用List作为队列,RPUSH上产消息,LPOP消费消息
- 缺点:没有等待队列里有值就直接消费
- 弥补:可以通过在应用层引入sleep机制去调用LPOP重试
弥补2:
BLPOP key [key …] timeout :阻塞直到队列有消息或者超时
blpop testlist 30 -- 没有消息时阻塞30秒
- 缺点:只能提供一个消费者消费
解决:使用pub/sub:主题订阅者模式
- 发送者(pub)发送消息,订阅者(sub)接收消息
- 订阅者可以订阅任意数量的频道
客户端1:subscribe myTopic --订阅myTopic频道
客户端2:subscribe myTopic --订阅myTopic频道
客户端3:subscribe anotherTopic --订阅另外一个频道
客户端4:publish myTopic 'hello' -- 客户端4发布myTopic消息 客户端1/2都能收到消息
客户端4:publish anotherTopic 'hello' -- 客户端4发布anotherTopic消息 客户端3收到消息
缺点:
- 消息发布是无状态的,无法保证可达 ,解决需要用专业的消息队列解决
6.持久化方式之DBA
Redis如何做持久化?
RDB(快照)持久化:保存某个时间点的全量数据快照
持久化配置解析
redis.conf
save 900 1 --900秒内产生1次插入操作,生成一次快照
save 300 10 --300秒内产生10次插入操作,生成一次快照
save 60 10000 --60秒内产生10000次插入操作,生成一次快照
save "" --禁用RDB
RDB策略会将数据文件以 dump.rdb 文件的方式保存
stop - writes - on - bgsave - error yes -- 当复制进程出错的时候,主进程就停止写入操作
rdbcompression yes -- 在备份的时候需要将备份文件压缩后再保存
RDB文件生成
- SAVE:阻塞Redis的服务进程,直到RDB文件被创建完成
- BGSAVE:Fork出一个子进程来创建RDB文件,不阻塞服务器进程
自动化触发RDB持久化的方式
- 根据redis.conf配置里的SAVE m n 定时触发(用的是BGSAVE)
- 主从复制时,主节点自动触发BGSAVE
- 执行Debug Reload 时
- 执行Shutdown且没有开启AOF持久化
BGSAVE原理
-
系统调用fork():创建进程,实现了Copy - on - write(写时复制)
Copy - on - write具体来说,当一个进程或线程尝试修改共享数据时,系统会首先检查是否有其他进程或线程也在使用相同的数据。如果是的话,系统会复制当前数据的副本,并让修改操作在副本上进行。这样,修改操作只影响到了当前进程或线程,而其他进程或线程继续共享原始数据。这种策略延迟了复制的时间,只有在确实需要时才执行,从而节省了内存和处理时间。
RDB缺点:
- 内存数据全量同步,数据量大会由于IO而严重影响性能
- 可能会因为Redis挂掉而丢失从当前到最近一次快照期间的数据
7.持久化方式之AOF
AOF(Append-Only-File)持久化:保存写状态
- 记录下除了查询以外的所有变更数据库状态的指令
- 以append的形式追加保存到AOF文件中(增量)
redis.conf
appendonly yes --打开AOF持久化策略
appendfilename "appendonly.aof" -- AOF文件名
appendfsync everysec --配置AOF文件的写入方式
参数:
everysec:每隔1秒就把缓存区的内容写入到文件里
always:一旦缓存区的内容发生变化,就把变化的内容写到AOF当中
no:将写入AOF的方式交给操作系统决定
修改配置后要重启redis
日志重写解决AOF文件大小不断增大的问题,原理如下:
- 调用fork()创建一个子进程
- 子进程把新的AOF写到一个临时文件里,不依赖原来的AOF文件
- 主进程持续将新的变动同事写到内存和原来的AOF里
- 主进程获取子进程重写AOF的完成信号,往新AOF同步增量变动
- 使用新的AOF文件替换掉旧的AOF文件
Redis数据的恢复
RDB和AOF文件共存情况下的恢复流程
RDB和AOF的优缺点
- RDB优点:全量数据快照,文件小,恢复快
- RDB缺点:无法保存最近一次快照之后的数据
- AOF优点:可读性高,适合保存增量数据,数据不易丢失
- AOF缺点:文件体积大,恢复时间长
RDB-AOF混合持久化方式(默认)
- BGSAVE做镜像全量持久化,AOF做增量持久化
8.Pipeline以及主从同步
使用Pipeline的好处
- Pipeline和Linux的管道类似
- Redis基于请求/响应模型,单个请求处理需要 一 一 应答
- Pipeline批量执行指令,节省多次IO往返的时间
- 有顺序依赖的指令建议分批发送
Redis的同步机制
主从同步原理
全量同步过程
- Salve发送sync命令到Master
- Master启动一个后台进程,将Redis中的数据快照保存到文件中
- Master将保存数据快照期间接收到的写命令缓存起来
- Master完成写文件操作后,将改文件发送给Salve
- 使用新的AOF文件替换掉旧的AOF文件
- Master将这期间收集的增量写命令发送给Salve端
增量同步过程
- Master接收到用户的操作指令,判断是否需要传播到Slave
- 将操作记录追加到AOF文件中
- 将操作传播到其他Slave:1、对齐主从库;2、往响应缓存写入指令
- 将缓存中的数据发送给Slave
Redis Sentinel
解决主从同步Master宕机后的主从切换问题:
- 监控:检查主从服务器是否运行正常
- 提醒:通过API向管理员或者其他应用程序发送故障通知
- 自动故障迁移:主从切换
流言协议:Gossip
在杂乱无章中寻求一致
- 每个节点都随机地与对方通信,最终所有节点的状态达成一致
- 种子节点定期随机向其他节点发送节点列表以及需要传播的消息
- 不保证信息一定会传递给所有节点,但是最终会趋于一致
9.Redis集群
如何从海量数据里快速找到所需?
- 分片:按照某种规则去划分数据,分散存储在多个节点上
- 常规的按照哈希划分无法实现节点的动态增删
一致性哈希算法:对2 的32次幂取模,将哈希值空间组织称虚拟的圆环
将数据Key使用相同的函数Hash计算处哈希值
Node C 宕机
新增服务器Node X
Hash环的数据倾斜问题
引入虚拟节点解决数据倾斜的问题