电竞赛事数据分析:LNG vs BLG的胜利背后
摘要
在S14瑞士轮次日,LNG以1:0战胜BLG,取得了开赛二连胜。本文将通过Python进行数据处理与分析,结合机器学习算法预测比赛结果,并使用数据可视化工具展示关键指标。通过对这场比赛的数据深入挖掘,揭示LNG获胜的关键因素。
引言
电子竞技(Esports)已经成为全球范围内的一项重要娱乐活动,而《英雄联盟》(League of Legends, LoL)作为其中最热门的游戏之一,其比赛数据蕴含了丰富的信息。本文将以LNG vs BLG的比赛为例,利用Python进行数据分析、可视化和机器学习,探讨LNG获胜的关键因素。
数据收集与预处理
首先,需要从公开的数据源获取比赛数据。这些数据通常包括选手表现、团队经济、击杀数、视野控制等。接下来,对数据进行清洗和预处理,以便后续分析。
数据来源
数据清洗
import pandas as pd
# 读取原始数据
data = pd.read_csv('match_data.csv')
# 处理缺失值
data = data.dropna()
# 处理重复值
data = data.drop_duplicates()
# 格式转换
data['game_duration'] = pd.to_timedelta(data['game_duration'])
# 其他数据清洗操作
data['gold_diff_15'] = data['team_gold_15'].diff()
数据探索与可视化
在数据预处理完成后,可以通过一些基本的统计方法和可视化手段来初步了解数据的特征。
基本统计
print(data.describe())
可视化
经济差分布
import matplotlib.pyplot as plt
plt.hist(data['gold_diff_15'], bins=30)
plt.xlabel('Gold Difference at 15 Minutes')
plt.ylabel('Frequency')
plt.title('Distribution of Gold Difference at 15 Minutes')
plt.show()
如图所示,经济差在前15分钟的分布情况: