题目描述
在幻想乡,上白泽慧音是以知识渊博闻名的老师。春雪异变导致人间之里的很多道路都被大雪堵塞,使有的学生不能顺利地到达慧音所在的村庄。因此慧音决定换一个能够聚集最多人数的村庄作为新的教学地点。人间之里由N个村庄(编号为1..N)和M条道路组成,道路分为两种一种为单向通行的,一种为双向通行的,分别用1和2来标记。如果存在由村庄A到达村庄B的通路,那么我们认为可以从村庄A到达村庄B,记为(A,B)。当(A,B)和(B,A)同时满足时,我们认为A,B是绝对连通的,记为<A,B>。绝对连通区域是指一个村庄的集合,在这个集合中任意两个村庄X,Y都满足<X,Y>。现在你的任务是,找出最大的绝对连通区域,并将这个绝对连通区域的村庄按编号依次输出。若存在两个最大的,输出字典序最小的,比如当存在1,3,4和2,5,6这两个最大连通区域时,输出的是1,3,4。
输入描述
第1行:两个正整数N,M
第2..M+1行:每行三个正整数a,b,t, t = 1表示存在从村庄a到b的单向道路,t = 2表示村庄a,b之间存在双向通行的道路。保证每条道路只出现一次。
输出描述
第1行: 1个整数,表示最大的绝对连通区域包含的村庄个数。
第2行:若干个整数,依次输出最大的绝对连通区域所包含的村庄编号。
样例输入
5 5
1 2 1
1 3 2
2 4 2
5 1 2
3 5 1
样例输出
3
1 3 5
数据范围及提示
对于60%的数据:N <= 200且M <= 10,000
对于100%的数据:N <= 5,000且M <= 50,000
分析
tarjan的裸题,但是要稍微记录一下当前强联通分量是由哪些组成的,而且有多长,其实在做的时候染一下色就好了。
代码
#include <bits/stdc++.h>
#define N 5010
using namespace std;
stack <int> S;
vector <int> E[N];
int dfn[N],low[N];
int belone[N],num[N];
int cnt = 0;
int tot = 0;
int ans = 0;
int n,m;
bool vis[N];
void tarjan(int x)
{
low[x] = dfn[x] = cnt++;
S.push(x);
vis[x] = true;
for (int i = 0; i < E[x].size(); i++)
{
int v = E[x][i];
if (!dfn[v])
{
tarjan(v);
low[x] = min(low[x],low[v]);
}
else if(vis[v])
low[x] = min(low[x],dfn[v]);
}
if (dfn[x] == low[x])
{
belone[x] = ++cnt;
num[cnt]++;
while (true)
{
int now = S.top();
S.pop();
vis[now] = false;
num[cnt]++;
belone[now] = cnt;
if(now == x)
break;
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for (int i = 1; i <= m; i++)
{
int k,x,y;
scanf("%d%d%d",&x,&y,&k);
E[x].push_back(y);
if (k == 2)
E[y].push_back(x);
}
for (int i = 1; i <= n; i++)
if (!dfn[i])
tarjan(i);
int s;
for (int i = 1; i <= n; i++)
if (num[belone[i]] > ans)
{
ans = num[belone[i]];
s = i;
}
printf("%d\n",ans-1);
for (int i = 1; i <= n; i++)
{
if (belone[i] == belone[s])
printf("%d ",i);
}
printf("\n");
}