BZOJ 3275: Number

Description

有N个正整数,需要从中选出一些数,使这些数的和最大。
若两个数a,b同时满足以下条件,则a,b不能同时被选
1:存在正整数C,使a*a+b*b=c*c
2:gcd(a,b)=1

Input

第一行一个正整数n,表示数的个数。
第二行n个正整数a1,a2,?an。

Output

最大的和。

Sample Input

5
3 4 5 6 7

Sample Output

22

HINT

n<=3000。

分析

可以证明奇数和奇数(不能构成勾股数)、偶数和偶数(最大公因数一定不会是1)是一定可以共存的,所以有可能连边的只可能是奇数和偶数之间所以只要枚举判断每两个奇数和偶数之间能否连边即可

代码

#include <bits/stdc++.h>

#define INF 0x7fffffff
#define N 3005
#define ll long long

#define sqr(x) ((x) * (x))

struct NOTE
{
    int to,next,c;
}e[N * N];

int s,t;

int cnt = 1;
int minC;

int next[N];
int cur[N];

void add(int x,int y,int c)
{
    e[++cnt].to = y;
    e[cnt].next = next[x];
    e[cnt].c = c;
    next[x] = cnt;

    e[++cnt].to = x;
    e[cnt].next = next[y];
    e[cnt].c = 0;
    next[y] = cnt;
}

int dis[N];

bool bfs()
{
    std::queue<int> Q;
    for (int i = s; i <= t; i++)
        dis[i] = 0;
    dis[s] = 1;
    Q.push(s);
    while (!Q.empty())
    {
        int u = Q.front();
        Q.pop();
        for (int i = next[u]; i; i = e[i].next)
        {
            if (e[i].c && !dis[e[i].to])
            {
                dis[e[i].to] = dis[u] + 1;
                if (e[i].to == t)
                    return 1;
                Q.push(e[i].to);
            }
        }
    }
    return 0;
}

int dfs(int x,int maxf)
{
    if (x == t || !maxf)
        return maxf;
    int ret = 0;
    for (int &i = cur[x]; i; i = e[i].next)
    {
        if (e[i].c && dis[x] + 1 == dis[e[i].to])
        {
            int f = dfs(e[i].to,std::min(e[i].c,maxf - ret));
            ret += f;
            e[i].c -= f;
            e[i ^ 1].c += f;
            if (ret == maxf)
                break;
        }
    }
    return ret;
}

void dinic()
{
    while (bfs())
    {
        for (int i = s; i <= t; i++)
            cur[i] = next[i];
        minC += dfs(s,INF);
    }
}

int gcd(int x,int y)
{
    if (!y)
        return x;
    return gcd(y,x % y);
}

int n;
int num[N];

int l[N];
int r[N];
int lc,rc;

int main()
{
    scanf("%d",&n);
    t = n + 1;
    s = 0;
    int sum = 0;
    for (int i = 1; i <= n; i++)
    {
        scanf("%d",&num[i]);
        if (num[i] & 1)
            add(s,i,num[i]), l[++lc] = i;
            else add(i,t,num[i]), r[++rc] = i;
        sum += num[i];
    }

    for (int i = 1; i <= lc; i++)
        for (int j = 1; j <= rc; j++)
        {
            ll now = sqr(num[l[i]]) + sqr(num[r[j]]);
            ll tmp = sqrt(now);
            if (tmp * tmp == now && gcd(num[l[i]],num[r[j]]) == 1)
                add(l[i],r[j],INF);
        }

    dinic();

    printf("%d\n",sum - minC);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值