BZOJ 1251: 序列终结者

Description

网上有许多题,就是给定一个序列,要你支持几种操作:A、B、C、D。一看另一道题,又是一个序列 要支持几种操作:D、C、B、A。尤其是我们这里的某人,出模拟试题,居然还出了一道这样的,真是没技术含量……这样 我也出一道题,我出这一道的目的是为了让大家以后做这种题目有一个“库”可以依靠,没有什么其他的意思。这道题目 就叫序列终结者吧。 【问题描述】 给定一个长度为N的序列,每个序列的元素是一个整数(废话)。要支持以下三种操作: 1. 将[L,R]这个区间内的所有数加上V。 2. 将[L,R]这个区间翻转,比如1 2 3 4变成4 3 2 1。 3. 求[L,R]这个区间中的最大值。 最开始所有元素都是0。

Input

第一行两个整数N,M。M为操作个数。 以下M行,每行最多四个整数,依次为K,L,R,V。K表示是第几种操作,如果不是第1种操作则K后面只有两个数。

Output

对于每个第3种操作,给出正确的回答。

Sample Input

4 4
1 1 3 2
1 2 4 -1
2 1 3
3 2 4

Sample Output

2

【数据范围】

N<=50000,M<=100000。

分析

一大清早就A了一题,身心愉悦
splay大法好

代码

#include <bits/stdc++.h>

#define N 50005
#define INF 0x7fffffff

struct NODE
{
    int son[2];
    int fa;
    int size;
    int mx, cover;

    int lazy;
    bool rev;
}t[N];

int root;
int size;

int id[N];

int read()
{
    int x = 0,f = 1;
    int ch = getchar();
    while (ch < '0' || ch > '9')
    {
        if (ch == '-')
            f = -1;
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9')
    {
        x = x * 10 + ch - '0';
        ch = getchar();
    }
    return x * f;
}

void pushDown(int k)
{
    int l = t[k].son[0];
    int r = t[k].son[1];
    int tmp = t[k].lazy;
    if (tmp)
    {
        t[k].lazy = 0;
        if (l)
        {
            t[l].mx += tmp;
            t[l].lazy += tmp;
            t[l].cover += tmp;
        }
        if (r)
        {
            t[r].mx += tmp;
            t[r].lazy += tmp;
            t[r].cover += tmp;
        }
    }
    if (t[k].rev)
    {
        t[k].rev = 0;
        t[l].rev ^= 1;
        t[r].rev ^= 1;
        std::swap(t[k].son[0],t[k].son[1]);
    }
}

void pushUp(int k)
{
    t[k].mx = std::max(t[t[k].son[0]].mx, t[t[k].son[1]].mx);
    t[k].mx = std::max(t[k].mx, t[k].cover);
    t[k].size = t[t[k].son[0]].size + t[t[k].son[1]].size + 1;
}

void rotate(int x,int &k)
{
    int y = t[x].fa;
    int z = t[y].fa;
    int l,r;
    if (t[y].son[0] == x)
        l = 0;
        else l = 1;
    r = l ^ 1;
    if (y == k)
        k = x;
    else
    {
        if (t[z].son[0] == y)
            t[z].son[0] = x;
            else t[z].son[1] = x;
    }
    t[x].fa = z;
    t[y].fa = x;
    t[t[x].son[r]].fa = y;
    t[y].son[l] = t[x].son[r];
    t[x].son[r] = y;
    pushUp(y);
    pushUp(x);
}

void splay(int x,int &k)
{
    while (x != k)
    {
        int y = t[x].fa;
        int z = t[y].fa;
        if (y != k)
        {
            if (t[y].son[0] == x ^ t[z].son[0] == y)
            {
                rotate(x,k);
            }
            else rotate(y,k);
        }
        rotate(x,k);
    }
}

int find(int k,int rank)
{
    if (t[k].lazy || t[k].rev)
        pushDown(k);
    int l = t[k].son[0], r = t[k].son[1];
    if (rank == t[l].size + 1)
        return k;
    else
        if (rank <= t[l].size)
            return find(l,rank);
        else return find(r,rank - t[l].size - 1);
}

void add(int l,int r,int val)
{
    int x = find(root,l);
    int y = find(root,r + 2);
    splay(x,root);
    splay(y,t[x].son[1]);
    int z = t[y].son[0];
    t[z].lazy += val;
    t[z].cover += val;
    t[z].mx += val;
}

void rever(int l,int r)
{
    int x = find(root,l);
    int y = find(root,r + 2);
    splay(x,root);
    splay(y,t[x].son[1]);
    t[t[y].son[0]].rev ^= 1;
}

void query(int l,int r)
{
    int x = find(root,l);
    int y = find(root,r + 2);
    splay(x,root);
    splay(y,t[x].son[1]);
    printf("%d\n",t[t[y].son[0]].mx);
}

void build(int l,int r,int f)
{
    if (l > r)
        return;
    int now = id[l];
    int last = id[f];
    if (l == r)
    {
        t[now].size = 1;
        t[now].fa = last;
        if (l < f)
            t[last].son[0] = now;
            else t[last].son[1] = now;
        return;
    }
    int mid = (l + r) >> 1;
    now = id[mid];
    build(l,mid - 1,mid);
    build(mid + 1,r,mid);
    t[now].fa = last;
    pushUp(now);
    if (mid < f)
        t[last].son[0] = now;
        else t[last].son[1] = now;
}

int main()
{
    t[0].mx = -INF;
    int n,m;
    n = read();
    m = read();
    for (int i = 1; i <= n + 2; i++)
        id[i] = ++size;
    build(1,n + 2,0);
    root = (n + 3) >> 1;
    for (int i = 1; i <= m; i++)
    {
        int opt,l,r,val;
        opt = read();
        if (opt == 1)
        {
            l = read();
            r = read();
            val = read();
            add(l,r,val);
            continue;
        }
        if (opt == 2)
        {
            l = read();
            r = read();
            rever(l,r);
            continue;
        }
        if (opt == 3)
        {
            l = read();
            r = read();
            query(l,r);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值