Description
windy有 N 条木板需要被粉刷。 每条木板被分为 M 个格子。 每个格子要被刷成红色或蓝色。 windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。 如果windy只能粉刷 T 次,他最多能正确粉刷多少格子? 一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。
Input
输入文件paint.in第一行包含三个整数,N M T。 接下来有N行,每行一个长度为M的字符串,’0’表示红色,’1’表示蓝色。
Output
输出文件paint.out包含一个整数,最多能正确粉刷的格子数。
Sample Input
3 6 3
111111
000000
001100
Sample Output
16
HINT
30%的数据,满足 1 <= N,M <= 10 ; 0 <= T <= 100 。 100%的数据,满足 1 <= N,M <= 50 ; 0 <= T <= 2500 。
分析
首先对每行拆开处理 令f[i][j]为用i刷子刷前j个格子最多刷对多少个点 动规处理出这一行刷i刷子最多能刷对多少个点 然后分组背包即可
代码
#include <bits/stdc++.h>
#define N 60
int max(int x,int y)
{
return x > y ? x : y;
}
int min(int x,int y)
{
return x < y ? x : y;
}
int n,m,T;;
char ch[N];
int a[N][N],f[N][N],g[N][N * N];
void dp(int pos)
{
memset(f, 0xef, sizeof(f));
f[0][0] = 0;
for (int i = 1; i <= m; i++)
{
for (int j = i; j <= m; j++)
{
int cnt[2] = {0};
for (int k = j - 1; k>= i - 1; k--)
{
cnt[ch[k + 1] - '0']++;
f[i][j] = max(f[i][j], f[i - 1][k] + max(cnt[0], cnt[1]));
}
}
}
for (int i = 1; i <= m; i++)
a[pos][i] = f[i][m];
}
int count()
{
memset(g, 0xef, sizeof(g));
g[0][0] = 0;
for (int i = 1; i <= n; i++)
for (int j = 0; j <= m; j++)
for (int k = T; k >= j; k--)
{
g[i][k] = max(g[i][k], g[i - 1][k - j] + a[i][j]);
}
return g[n][T];
}
void init()
{
scanf("%d%d%d",&n,&m,&T);
for (int i = 1; i <= n; i++)
{
scanf("%s", ch + 1);
dp(i);
}
}
int main()
{
init();
printf("%d\n",count());
}