BZOJ 1296: [SCOI2009]粉刷匠

Description

windy有 N 条木板需要被粉刷。 每条木板被分为 M 个格子。 每个格子要被刷成红色或蓝色。 windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。 如果windy只能粉刷 T 次,他最多能正确粉刷多少格子? 一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。

Input

输入文件paint.in第一行包含三个整数,N M T。 接下来有N行,每行一个长度为M的字符串,’0’表示红色,’1’表示蓝色。

Output

输出文件paint.out包含一个整数,最多能正确粉刷的格子数。

Sample Input

3 6 3

111111

000000

001100

Sample Output

16

HINT

30%的数据,满足 1 <= N,M <= 10 ; 0 <= T <= 100 。 100%的数据,满足 1 <= N,M <= 50 ; 0 <= T <= 2500 。

分析

首先对每行拆开处理 令f[i][j]为用i刷子刷前j个格子最多刷对多少个点 动规处理出这一行刷i刷子最多能刷对多少个点 然后分组背包即可

代码

#include <bits/stdc++.h>

#define N 60

int max(int x,int y)
{
    return x > y ? x : y;
}

int min(int x,int y)
{
    return x < y ? x : y;
}

int n,m,T;;
char ch[N];
int a[N][N],f[N][N],g[N][N * N];

void dp(int pos)
{
    memset(f, 0xef, sizeof(f));
    f[0][0] = 0;
    for (int i = 1; i <= m; i++)
    {
        for (int j = i; j <= m; j++)
        {
            int cnt[2] = {0};
            for (int k = j - 1; k>= i - 1; k--)
            {
                cnt[ch[k + 1] - '0']++;
                f[i][j] = max(f[i][j], f[i - 1][k] + max(cnt[0], cnt[1]));
            }
        }
    }
    for (int i = 1; i <= m; i++)
        a[pos][i] = f[i][m];
}

int count()
{
    memset(g, 0xef, sizeof(g));
    g[0][0] = 0;
    for (int i = 1; i <= n; i++)
        for (int j = 0; j <= m; j++)
            for (int k = T; k >= j; k--)
            {
                g[i][k] = max(g[i][k], g[i - 1][k - j] + a[i][j]);
            }
    return g[n][T];
}

void init()
{
    scanf("%d%d%d",&n,&m,&T);
    for (int i = 1; i <= n; i++)
    {
        scanf("%s", ch + 1);
        dp(i);
    }
}

int main()
{
    init();
    printf("%d\n",count());
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值