Description
给定一棵大小为 n 的有根点权树,支持以下操作:
• 换根
• 修改点权
• 查询子树最小值
Input
第一行两个整数 n, Q ,分别表示树的大小和操作数。
接下来n行,每行两个整数f,v,第i+1行的两个数表示点i的父亲和点i的权。保证f < i。如 果f = 0,那么i为根。输入数据保证只有i = 1时,f = 0。
接下来 m 行,为以下格式中的一种:
• V x y表示把点x的权改为y
• E x 表示把有根树的根改为点 x
• Q x 表示查询点 x 的子树最小值
Output
对于每个 Q ,输出子树最小值。
Sample Input
3 7
0 1
1 2
1 3
Q 1
V 1 6
Q 1
V 2 5
Q 1
V 3 4
Q 1
Sample Output
1
2
3
4
HINT
对于 100% 的数据:n, Q ≤ 10^5。
分析
啊 伟大的线段树
一开始还以为是某种神奇的lct姿势,后来想了一下,发现如果当前根在x的子树外的话x的子树就还是原来的子树,否则x当前的子树就是除了x的根所在的子树外的其他部分。
那么直接上线段树就好了。
代码
#include <bits/stdc++.h>
int read()
{
int x = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9') {if (ch == '-') f = -1; ch = getchar();}
while (ch >= '0' && ch <= '9') {x = x * 10 + ch - '0'; ch = getchar();}
return x * f;
}
const int N = 100005;
struct Edge
{
int to,next;
}e[N * 2];
int cnt;
int next[N];
void add(int x,int y)
{
e[++cnt].to = y, e[cnt].next = next[x], next[x] = cnt;
e[++cnt].to = x, e[cnt].next = next[y], next[y] = cnt;
}
int dep[N];
int dfn[N],mn[N],mx[N],b[N];
int tim;
int fa[N][20];
void dfs(int x)
{
dep[x] = dep[fa[x][0]] + 1;
dfn[x] = ++tim, mn[x] = tim, b[tim] = x;
for (int i = 1; i <= 16; i++)
fa[x][i] = fa[fa[x][i - 1]][i - 1];
for (int i = next[x]; i; i = e[i].next)
{
if (e[i].to == fa[x][0])
continue;
fa[e[i].to][0] = x;
dfs(e[i].to);
}
mx[x] = tim;
}
int getLca(int x,int y)
{
if (dep[x] < dep[y])
std::swap(x,y);
for (int i = 16; i >= 0; i--)
if (dep[fa[x][i]] >= dep[y])
x = fa[x][i];
if (x == y)
return x;
for (int i = 16; i >= 0; i--)
if (fa[x][i] != fa[y][i])
x = fa[x][i], y = fa[y][i];
return fa[x][0];
}
int getBel(int x,int y)
{
for (int i = 16; i >= 0; i--)
{
if (dep[fa[y][i]] > dep[x])
y = fa[y][i];
}
return y;
}
struct Tree
{
int mn;
}t[N * 4];
void upData(int p)
{
t[p].mn = std::min(t[p * 2].mn, t[p * 2 + 1].mn);
}
int a[N];
void build(int p, int l, int r)
{
if (l == r)
{
t[p].mn = a[b[l]];
return;
}
int mid = (l + r) >> 1;
build(p * 2, l, mid);
build(p * 2 + 1, mid + 1, r);
upData(p);
}
void ins(int p,int l,int r,int x,int y)
{
if (l == r)
{
t[p].mn = y;
return;
}
int mid = (l + r) >> 1;
if (x <= mid)
ins(p * 2, l, mid, x, y);
else ins(p * 2 + 1, mid + 1, r, x, y);
upData(p);
}
int query(int p,int l,int r,int x,int y)
{
if (x > y)
return 1e9;
if (l == x && r == y)
return t[p].mn;
int mid = (l + r) >> 1;
return std::min(query(p * 2, l, mid, x, std::min(y, mid)), query(p * 2 + 1, mid + 1, r, std::max(x, mid + 1), y));
}
int main()
{
int n = read(), m = read();
for (int i = 1; i <= n; i++)
{
int x = read(); a[i] = read();
if (x)
add(x, i);
}
int root = 1;
dfs(1);
build(1, 1, n);
while (m--)
{
char op[2];
scanf("%s",op);
if (op[0] == 'V')
{
int x = read(), y = read();
ins(1, 1, n, dfn[x], y);
}
else if (op[0] == 'E')
root = read();
else
{
int x = read();
if (x == root)
printf("%d\n",query(1,1,n,1,n));
else
{
if (getLca(x,root) != x)
printf("%d\n",query(1, 1, n, mn[x], mx[x]));
else
{
int y = getBel(x, root);
printf("%d\n",std::min(query(1, 1, n, 1, mn[y] - 1), query(1, 1, n, mx[y] + 1, n)));
}
}
}
}
}