BZOJ 3306: 树

Description

给定一棵大小为 n 的有根点权树,支持以下操作:
  • 换根
  • 修改点权
 • 查询子树最小值

Input

  第一行两个整数 n, Q ,分别表示树的大小和操作数。
  接下来n行,每行两个整数f,v,第i+1行的两个数表示点i的父亲和点i的权。保证f < i。如 果f = 0,那么i为根。输入数据保证只有i = 1时,f = 0。
  接下来 m 行,为以下格式中的一种:
  • V x y表示把点x的权改为y
  • E x 表示把有根树的根改为点 x
  • Q x 表示查询点 x 的子树最小值

Output

  对于每个 Q ,输出子树最小值。

Sample Input

3 7

0 1

1 2

1 3

Q 1

V 1 6

Q 1

V 2 5

Q 1

V 3 4

Q 1

Sample Output

1

2

3

4

HINT

  对于 100% 的数据:n, Q ≤ 10^5。

分析

啊 伟大的线段树
一开始还以为是某种神奇的lct姿势,后来想了一下,发现如果当前根在x的子树外的话x的子树就还是原来的子树,否则x当前的子树就是除了x的根所在的子树外的其他部分。
那么直接上线段树就好了。

代码

#include <bits/stdc++.h>

int read()
{
    int x = 0, f = 1;
    char ch = getchar();
    while (ch < '0' || ch > '9') {if (ch == '-') f = -1; ch = getchar();}
    while (ch >= '0' && ch <= '9') {x = x * 10 + ch - '0'; ch = getchar();}
    return x * f;
}

const int N = 100005;

struct Edge
{
    int to,next;
}e[N * 2];

int cnt;
int next[N];

void add(int x,int y)
{
    e[++cnt].to = y, e[cnt].next = next[x], next[x] = cnt;
    e[++cnt].to = x, e[cnt].next = next[y], next[y] = cnt;
}

int dep[N];
int dfn[N],mn[N],mx[N],b[N];
int tim;

int fa[N][20];

void dfs(int x)
{
    dep[x] = dep[fa[x][0]] + 1;
    dfn[x] = ++tim, mn[x] = tim, b[tim] = x;
    for (int i = 1; i <= 16; i++)
        fa[x][i] = fa[fa[x][i - 1]][i - 1];
    for (int i = next[x]; i; i = e[i].next)
    {
        if (e[i].to == fa[x][0])
            continue;
        fa[e[i].to][0] = x;
        dfs(e[i].to);
    }
    mx[x] = tim;
}

int getLca(int x,int y)
{
    if (dep[x] < dep[y])
        std::swap(x,y);
    for (int i = 16; i >= 0; i--)
        if (dep[fa[x][i]] >= dep[y])
            x = fa[x][i];
    if (x == y)
        return x;
    for (int i = 16; i >= 0; i--)
        if (fa[x][i] != fa[y][i])
            x = fa[x][i], y = fa[y][i];
    return fa[x][0];
}

int getBel(int x,int y)
{
    for (int i = 16; i >= 0; i--)
    {
        if (dep[fa[y][i]] > dep[x])
            y = fa[y][i];
    }
    return y;
}

struct Tree
{
    int mn;
}t[N * 4];

void upData(int p)
{
    t[p].mn = std::min(t[p * 2].mn, t[p * 2 + 1].mn);
}

int a[N];

void build(int p, int l, int r)
{
    if (l == r)
    {
        t[p].mn = a[b[l]];
        return;
    }
    int mid = (l + r) >> 1;
    build(p * 2, l, mid);
    build(p * 2 + 1, mid + 1, r);
    upData(p);
}

void ins(int p,int l,int r,int x,int y)
{
    if (l == r)
    {
        t[p].mn = y;
        return;
    }
    int mid = (l + r) >> 1;
    if (x <= mid)
        ins(p * 2, l, mid, x, y);
    else ins(p * 2 + 1, mid + 1, r, x, y);
    upData(p);
}

int query(int p,int l,int r,int x,int y)
{
    if (x > y)
        return 1e9;
    if (l == x && r == y)
        return t[p].mn;
    int mid = (l + r) >> 1;
    return std::min(query(p * 2, l, mid, x, std::min(y, mid)), query(p * 2 + 1, mid + 1, r, std::max(x, mid + 1), y));
}

int main()
{
    int n = read(), m = read();
    for (int i = 1; i <= n; i++)
    {
        int x = read(); a[i] = read();
        if (x)
            add(x, i);
    }
    int root = 1;
    dfs(1);
    build(1, 1, n);
    while (m--)
    {
        char op[2];
        scanf("%s",op);
        if (op[0] == 'V')
        {
            int x = read(), y = read();
            ins(1, 1, n, dfn[x], y);
        }
        else if (op[0] == 'E')
            root = read();
        else
        {
            int x = read();
            if (x == root)
                printf("%d\n",query(1,1,n,1,n));
            else
            {
                if (getLca(x,root) != x)
                    printf("%d\n",query(1, 1, n, mn[x], mx[x]));
                else
                {
                    int y = getBel(x, root);
                    printf("%d\n",std::min(query(1, 1, n, 1, mn[y] - 1), query(1, 1, n, mx[y] + 1, n)));
                }
            }
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值