题意
在一个长度为L的环上有一群蚂蚁,每一只蚂蚁都有一个两两不同的坐标和行走方向(逆时针或顺时针)且行走速度均为1。当两只蚂蚁相撞时他们会一起反向,问T个时刻后每一只蚂蚁的位置。
1<=n<=100000,1<=T,L<=10^9
分析
两只蚂蚁相撞的情况实际可以看成是他们代替对方走了下去,也就是编号互换。所以我们可以得到T时刻后所有蚂蚁的坐标。
还有一个性质是所有蚂蚁的相对顺序始终不变,因为他们不会跨过对方。
于是,当有一只蚂蚁从0走到L-1时,坐标最小的蚂蚁的编号就会+1;反之,当有一只蚂蚁从L-1走到0时,编号为-1,于是我们就可以得到所有蚂蚁的坐标了。
代码
#include <bits/stdc++.h>
const int N = 100005;
int read()
{
int x = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9') {if (ch == '-') f = -1; ch = getchar();}
while (ch >= '0' && ch <= '9') {x = x * 10 + ch - '0'; ch = getchar();}
return x * f;
}
int a[N],b[N];
int main()
{
int n = read(), L = read(), T = read();
int s = 1;
for (int i = 1; i <= n; i++)
{
int x = read(), w = read();
if (w == 1)
{
a[i] = (x + T) % L;
if (T >= L - x)
(s -= (T - L + x) / L + 1) %= n;
}
else
{
a[i] = ((x - T) % L + L) % L;
if (T >= x + 1)
(s += (T - x - 1) / L + 1) %= n;
}
}
s = (s % n + n - 1) % n + 1;
std::sort(a + 1, a + n + 1);
for (int i = 1; i <= n; i++)
b[(s + i - 2) % n + 1] = a[i];
for (int i = 1; i <= n; i++)
printf("%d\n",b[i]);
}