AtCoder Grand Contest 013 C - Ants on a Circle

题意

在一个长度为L的环上有一群蚂蚁,每一只蚂蚁都有一个两两不同的坐标和行走方向(逆时针或顺时针)且行走速度均为1。当两只蚂蚁相撞时他们会一起反向,问T个时刻后每一只蚂蚁的位置。
1<=n<=100000,1<=T,L<=10^9

分析

两只蚂蚁相撞的情况实际可以看成是他们代替对方走了下去,也就是编号互换。所以我们可以得到T时刻后所有蚂蚁的坐标。
还有一个性质是所有蚂蚁的相对顺序始终不变,因为他们不会跨过对方。
于是,当有一只蚂蚁从0走到L-1时,坐标最小的蚂蚁的编号就会+1;反之,当有一只蚂蚁从L-1走到0时,编号为-1,于是我们就可以得到所有蚂蚁的坐标了。

代码

#include <bits/stdc++.h>

const int N = 100005;

int read()
{
    int x = 0, f = 1;
    char ch = getchar();
    while (ch < '0' || ch > '9') {if (ch == '-') f = -1; ch = getchar();}
    while (ch >= '0' && ch <= '9') {x = x * 10 + ch - '0'; ch = getchar();}
    return x * f;
}

int a[N],b[N];

int main()
{
    int n = read(), L = read(), T = read();
    int s = 1;
    for (int i = 1; i <= n; i++)
    {
        int x = read(), w = read();
        if (w == 1)
        {
            a[i] = (x + T) % L;
            if (T >= L - x)
                (s -= (T - L + x) / L + 1) %= n;
        }
        else
        {
            a[i] = ((x - T) % L + L) % L;
            if (T >= x + 1)
                (s += (T - x - 1) / L + 1) %= n;
        }
    }
    s = (s % n + n - 1) % n + 1;
    std::sort(a + 1, a + n + 1);
    for (int i = 1; i <= n; i++)
        b[(s + i - 2) % n + 1] = a[i];
    for (int i = 1; i <= n; i++)
        printf("%d\n",b[i]);
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ypxrain/article/details/79961952
个人分类: 递推
想对作者说点什么? 我来说一句
相关热词

没有更多推荐了,返回首页

关闭
关闭
关闭