Description
在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达。现在,我军已经侦查到敌军的总部在编号为1的岛屿,而且他们已经没有足够多的能源维系战斗,我军胜利在望。已知在其他k个岛屿上有丰富能源,为了防止敌军获取能源,我军的任务是炸毁一些桥梁,使得敌军不能到达任何能源丰富的岛屿。由于不同桥梁的材质和结构不同,所以炸毁不同的桥梁有不同的代价,我军希望在满足目标的同时使得总代价最小。
侦查部门还发现,敌军有一台神秘机器。即使我军切断所有能源之后,他们也可以用那台机器。机器产生的效果不仅仅会修复所有我军炸毁的桥梁,而且会重新随机资源分布(但可以保证的是,资源不会分布到1号岛屿上)。不过侦查部门还发现了这台机器只能够使用m次,所以我们只需要把每次任务完成即可。
Input
第一行一个整数n,代表岛屿数量。
接下来n-1行,每行三个整数u,v,w,代表u号岛屿和v号岛屿由一条代价为c的桥梁直接相连,保证1<=u,v<=n且1<=c<=100000。
第n+1行,一个整数m,代表敌方机器能使用的次数。
接下来m行,每行一个整数ki,代表第i次后,有ki个岛屿资源丰富,接下来k个整数h1,h2,…hk,表示资源丰富岛屿的编号。
Output
输出有m行,分别代表每次任务的最小代价。
Sample Input
10
1 5 13
1 9 6
2 1 19
2 4 8
2 3 91
5 6 8
7 5 4
7 8 31
10 7 9
3
2 10 6
4 5 7 8 3
3 9 4 6
Sample Output
12
32
22
HINT
对于100%的数据,2<=n<=250000,m>=1,sigma(ki)<=500000,1<=ki<=n-1
#分析
显然如果只有一个询问的话只要树形dp即可。
若是多个询问的话我们就可以通过构建虚树来优化复杂度。
对于被选定的点对(x,y),设f=lca(x,y),若x和f之间没有被选定的点,那么x到f的路径就可以变为f->x。那么就可以把这棵树变成一棵只有k*2个节点的树,然后树形dp即可。
现在关键是如何构建虚树。
先把所有选定的点按照dfs序排序,假设y是x和y的lca则x必然可以省去。我们维护一个栈,对于新加入的一个点x,设栈顶元素为y,f=lca(x,y),那么y到f的路径上的点就可以被压缩,然后把f和x入栈即可。
代码
#include <bits/stdc++.h>
const int N = 250005;
typedef long long ll;
int read()
{
int x = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9') {if (ch == '-') f = -1; ch = getchar();}
while (ch >= '0' && ch <= '9') {x = x * 10 + ch - '0'; ch = getchar();}
return x * f;
}
struct Edge
{
int to,next;
ll w;
}e[N * 2];
int next1[N],next2[N];
int cnt;
void add1(int x,int y,int z)
{
e[++cnt].to = y, e[cnt].next = next1[x], next1[x] = cnt; e[cnt].w = z;
e[++cnt].to = x, e[cnt].next = next1[y], next1[y] = cnt; e[cnt].w = z;
}
void add2(int x,int y)
{
if (x == y)
return;
e[++cnt].to = y, e[cnt].next = next2[x], next2[x] = cnt;
}
int tim;
int dfn[N];
int dep[N];
ll mn[N];
int logn;
int fa[N][20];
void dfs(int x)
{
dfn[x] = ++tim;
for (int i = 1; i <= logn; i++)
fa[x][i] = fa[fa[x][i - 1]][i - 1];
dep[x] = dep[fa[x][0]] + 1;
for (int i = next1[x]; i; i = e[i].next)
{
if (e[i].to == fa[x][0])
continue;
fa[e[i].to][0] = x;
mn[e[i].to] = std::min(mn[x], e[i].w);
dfs(e[i].to);
}
}
int getLca(int x,int y)
{
if (dep[x] < dep[y])
std::swap(x,y);
for (int i = logn; i >= 0; i--)
{
if (dep[fa[x][i]] >= dep[y])
x = fa[x][i];
}
if (x == y)
return x;
for (int i = logn; i >= 0; i--)
{
if (fa[x][i] != fa[y][i])
x = fa[x][i], y = fa[y][i];
}
return fa[x][0];
}
ll f[N];
int t[N];
int a[N];
void dp(int x)
{
f[x] = mn[x];
ll s = 0;
for (int i = next2[x]; i; i = e[i].next)
{
dp(e[i].to);
s += f[e[i].to];
}
if (s < f[x] && s && !t[x])
f[x] = s;
next2[x] = 0;
}
bool cmp(int x,int y)
{
return dfn[x] < dfn[y];
}
int stack[N];
int n;
void solve()
{
int k = read();
cnt = 0;
for (int i = 1; i <= k; i++)
a[i] = read(), t[a[i]] = 1;
std::sort(a + 1, a + k + 1, cmp);
int top = 0;
stack[++top] = 1;
for (int i = 1; i <= k; i++)
{
int lca = getLca(stack[top], a[i]);
if (lca == stack[top])
{
if (stack[top] != a[i])
stack[++top] = a[i];
continue;
}
while (dep[stack[top - 1]] >= dep[lca])
add2(stack[top - 1], stack[top]), top--;
if (dep[stack[top]] > dep[lca])
add2(lca, stack[top]), top--;
if (lca != stack[top])
stack[++top] = lca;
stack[++top] = a[i];
}
while (top > 1)
{
add2(stack[top - 1], stack[top]);
top--;
}
dp(1);
for (int i = 1; i <= k; i++)
t[a[i]] = 0;
printf("%lld\n",f[1]);
}
int main()
{
n = read();
logn = log(n) / log(2);
for (int i = 1; i < n; i++)
{
int x = read(), y = read(), z = read();
add1(x,y,z);
}
mn[1] = 1e17;
dfs(1);
int m = read();
for (int i = 1; i <= m; i++)
solve();
}
413

被折叠的 条评论
为什么被折叠?



