Group by 学习

1.group by   使用时必须使用聚合函数才可以使用Group by。根据一个或多个列对结果集进行分组。

2.select rq ,SUM(case  when shengfu='胜' then 1 else 0 end)'胜',SUM(case when shengfu='负' then 0 else 1 end)'负' from temp group by rq

在以上的sql语句中使用聚合SUM()函数,用case when 来实现条件判断。读取出数据之后又group by进行分组排序 






  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Pandas DataFrame 的 groupby 方法可以将数据按照指定的分组键进行分组。可以使用一个或多个列作为分组键,并对各组数据进行聚合、转换等操作。语法格式为: df.groupby(by=grouping_columns)[columns_to_show].function() 其中,by 参数指定分组键,可以是单个列名或多个列名组成的列表;columns_to_show 参数指定要显示的列,可以是单个列名或多个列名组成的列表;function 指定对各组数据进行的操作,如 sum、mean 等。 例如: df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar'], 'B': ['one', 'one', 'two', 'three', 'two', 'two'], 'C': [1, 2, 3, 4, 5, 6], 'D': [2.0, 3.0, 4.0, 5.0, 6.0, 7.0]}) df.groupby('A').sum() 这将会按照A列进行分组,并对C和D列进行求和。 ### 回答2: Python的DataFrame是一种二维数据结构,类似于Excel的表格,可以存储和处理大量数据。而DataFrame的groupby函数可以进行数据的分组操作。 groupby函数可以根据某一列或多列的值将数据分成若干个组,然后针对每个组进行相应的操作。具体而言,groupby函数的用法如下: df.groupby('列名'):根据指定列名对数据进行分组。返回一个GroupBy对象。 GroupBy对象拥有许多方法,可以对分组后的数据进行各种操作。例如: - size():统计每个组的行数; - count():统计每个组中非缺失值的个数; - mean():计算每个组的平均值; - sum():计算每个组的和等等。 除了单独对每个组执行上述操作外,也可以对某一列进行运算,例如: df.groupby('列名')['待运算列名'].sum():计算某一列在每个组中的和。 另外,groupby函数也支持多列分组,例如: df.groupby(['列1', '列2']):根据多个列的值进行分组。返回一个多级索引的GroupBy对象。 最后,可以通过reset_index()方法将GroupBy对象重新转换为DataFrame对象,将分组后的结果整理成一个表格。 总之,Python的DataFrame的groupby函数是一个功能强大的数据分组工具,可以方便地对数据进行分组、统计和计算等操作,对数据分析和处理非常有帮助。 ### 回答3: Python的pandas库中的DataFrame对象提供了一个功能强大的groupby方法,可以根据指定的列或多列对数据进行分组操作。 DataFrame的groupby方法返回一个GroupBy对象,可以进行各种聚合操作,如计算分组平均值、求和、计数、最大值和最小值等。 groupby方法的常见用法如下: 1. 根据单个列进行分组: df.groupby('column_name') 2. 根据多个列进行分组: df.groupby(['column_name1', 'column_name2']) 3. 进行分组后的聚合操作,如计算平均值: df.groupby('column_name').mean() 4. 可以通过agg方法进行自定义聚合操作,如计算多个列的和: df.groupby('column_name').agg({'column_name1': 'sum', 'column_name2': 'sum'}) 5. 进行分组后的遍历操作: for group_name, group_data in df.groupby('column_name'): # 对每个分组进行操作 6. 按照指定顺序对分组进行排序: df.groupby('column_name').sum().sort_values('column_name', ascending=False) 7. 根据分组结果进行过滤: df.groupby('column_name').filter(lambda x: x['column_name'].sum() > threshold) 总之,Python的DataFrame通过groupby方法提供了强大的数据分组功能,可以方便地对数据进行分类、聚合和分析。通过学习和使用groupby方法,可以更好地高效地处理和分析数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值