CS231n 计算机视觉(学习笔记)第三章(0725)

3.1 损失函数

定义一个度量,评价任意某一个W表现优劣
损失函数,以W为输入,对比得分,定量评价W的好坏
从W的可行域中,挑选出表现最不差的,漫长的优化过程 极小化
SVM损失函数
安全边际
损失函数:各类别损失函数求值的和的平均数
正则化:鼓励模型选择更简单的w
标准损失函数包括:数据丢失项、正则项(以超参数λ平衡这两项)
正则:减少模型复杂度
softmax损失函数

3.2 优化

优化
slope 梯度下降 (有限差分法–原理)
解析梯度 数值梯度(调试工具-单元测试)
step 步长 学习率(第一个超参数)
随机梯度下降(减少单次计算损耗)

特征提取器 特征计算 颜色直方图、方向梯度直方图、边缘方向直方图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值