手把手教你用Python写线性回归

Python 专栏收录该内容
8 篇文章 0 订阅

说说我当初为什么会想到升级成算法工程师。记得三年前,我还在印孚瑟斯(Infosys),我们的CFO非常自豪的宣布公司已经成功的让专科生的比例提高了,让本科生的比例降低了。我作为一个本科程序员,听了十分难受。当然,公司这样做是为了利润,也合理合法。换了我是CFO,我也会这样做,不过,我应该不会像他一样大声说。有些事,可以做,不能说。

后来,机缘巧合,我学习了机器学习,走上了算法工程师这条路。当时我学机器学习,是从吴恩达(Andrew Ng)的Coursera课程开始的。很多人和我一样,也是开了这门课,开始机器学习的。这门课挺好,可惜开发语言用了Octave,以至于我每次写作业,都很痛苦,因为我还要学Octave语言,而且这东西学了也没啥用。另外,这门课是英语的,只有少数人能看懂。

本文的目的,就是从最基本,最简单的机器学习算法讲起,手把手的教你实现这个算法。一边编程,一边就明白这个算法的原理了。我本人也是程序员转的算法工程师,我们的强项就是编程,弱项就是数学。我针对这个特点,专门做了以下教程。

言归正传。首先我们看看线性回归在整个机器学习里的位置。

从机器学习到线性回归

线æ§åå½å¨æ´ä¸ªæºå¨å­¦ä¹ 
今天,我们只关注机器学习到线性回归这条线上的概念。别的以后再说。为了让大家听懂,我这次也不查维基百科了,直接按照自己的理解用大白话说,可能不是很严谨。

机器学习就是机器可以自己学习,而机器学习的方法就是利用现有的数据和算法,解出算法的参数。从而得到可以用的模型。

监督学习就是利用已有的数据(我们叫X,或者特征),和数据的标注(我们叫Y),找到x和y之间的对应关系,或者说是函数f。

回归分析是一种因变量为连续值得监督学习。

线性回归是一种x和y之间的关系为线性关系的回归分析。y=a1x1+a2x2+by=a1x1+a2x2+b,这个叫线性关系。如果这里出现了x2x2,log(x)log(x), sin(x)sin(x)之类的,那就不是线性关系了。

一元线性回归说的是,自变量x是一个纯量(scalar)。scalar类型的变量,是不可再分的。

我希望你能说明白这些概念的关系。不过,我自己也是花了很久才了解清楚的。如果你没听明白,也没关系。毕竟都是概念,没什么实际的例子,也很难理解。等你看完了本文,了解了一元线性回归。回过头来再看这些概念,就能更好的理解了。

问题
这里,我们的问题是,找出算法工程师和程序员之间的工资关系。这里直接给出北京,上海,杭州,深圳,广州的工资。

城市 x-程序员工资 y-算法工程师工资
北京    1.38542.1332
上海    1.22132.0162
杭州    1.10091.9138
深圳    1.06551.8621
广州    0.095031.8016

把他们用图打出来看看他们之间的关系。

ç¨åºååç®æ³å·¥ç¨å¸å·¥èµ

由图可见,他们之间大致是一个线性关系,这时候,我们就可以试着用一元线性回归去拟合(fit)他们之间的关系。

数学模型
一元线性回归公式


以下是公式 
y=ax+b+εy=ax+b+ε
y 为应变量 dependent variable 
x 为自变量 independent variable 
a 为斜率 coeffient 
b 为截距 intercept 
ε (读作epsilon)为误差,正态分布 
线性回归的目标是,找到一组a和b,使得ε最小 
y^=ax+by^=ax+b 
ε=y−y^ε=y−y^
y^y^ 读作y hat,也有人读作y帽子。这里的帽子一般表示估计值,用来区别真实值y。

下图可以更好的帮助你理解。

(图片来自互联网)

黑色的点为观测样本,即y=ax+b+ε$。

x红色的线为回归线,即y^=ax+by^=ax+b。

x蓝色的线段为误差,即ε=y−y^ε=y−y^


方差 - 损失函数 Cost Function

 
在机器学习中,很多时候,我们需要找到一个损失函数。有了损失函数,我们就可以经过不断地迭代,找到损失函数的全局或者局部最小值(或者最大值)。损失函数使得我们的问题转化成数学问题,从而可以用计算机求解。在线性回归中,我们用方差作为损失函数。我们的目标是使得方差最小。

 下面的表格解释了什么是方差。

其中SSE(Sum of Square Error)是总的方差,MSE(Mean Square Error)是方差的平均值。

而这里的损失函数,用的是0.5 * MSE。即:

J(a,b)=12n∑ni=0(yi−y^i)2J(a,b)=12n∑i=0n(yi−y^i)2
记住,这里的损失函数是针对参数a和b的函数,y和y^y^ 其实都是已知的。

优化方法 Optimization Function


有了损失函数,我们还需要一个方法,使得我们可以找到这个损失函数的最小值。机器学习把他叫做优化方法。这里的优化方法,就是算损失的方向。或者说,当我的参数变化的时候,我的损失是变大了还是变小了。如果a变大了,损失变小了。那么,说明a增大这个方向是正确的,我们可以朝着这个方向继续小幅度的前进。反之,就应该考虑往相反的方向试试看。因为每个参数(a和b)都是一维的,所以,所谓的方向,无非就是正负符号。

这里,我们需要用偏微分的方法,得到损失函数的变化量。即:

∂J∂a=∂12n∑ni=0(yi−y^i)2∂a∂J∂a=∂12n∑i=0n(yi−y^i)2∂a 
=1n∑ni=0(yi−axi−b)∂(yi−axi−b)∂a=1n∑i=0n(yi−axi−b)∂(yi−axi−b)∂a 
=1n∑ni=0(yi−axi−b)(−xi)=1n∑i=0n(yi−axi−b)(−xi) 
=1n∑ni=0x(y^i−yi)=1n∑i=0nx(y^i−yi)
∂J∂b=∂12n∑ni=0(yi−y^i)2∂a∂J∂b=∂12n∑i=0n(yi−y^i)2∂a 
=1n∑ni=0(yi−axi−b)∂(yi−axi−b)∂b=1n∑i=0n(yi−axi−b)∂(yi−axi−b)∂b 
=1n∑ni=0(yi−axi−b)(−1)=1n∑i=0n(yi−axi−b)(−1) 
=1n∑ni=0(y^i−yi)=1n∑i=0n(y^i−yi)
如果你已经忘了微积分,你暂时可以不必纠结上面的公式,只要知道公式给出了损失函数的变化就可以了。伟大的python还提供了sympy,你可以用sympy做微积分。这部分我也放在附件代码里了,有兴趣的可以看一下。

之前说到,整过迭代过程是小幅度进行的。这里,就需要一个超参数来控制这个过程。这个超参数就是αα,通常是0.01.

这时,我们就可以去更新a和b的值: 
a=a−α∂J∂aa=a−α∂J∂a 
b=b−α∂J∂bb=b−α∂J∂b
到这里,在你继续往下读之前,你先自己考虑一下,为什么这里是负号?

你考虑好了么,如果你考虑好了,我就公布答案了。

本身∂J∂a∂J∂a 和 ∂J∂b∂J∂b 是损失函数的变化量。如果损失函数随着a变大了,即 ∂J∂a∂J∂a 为正。说明a的增大会导致损失函数的增大。那么是不是说,a的减小会使得损失函数减小呢?而我们的目标是使得J最小,所以,这个时候,我们的a要减小一点点。

 
(图片来自互联网)

算法步骤

a和b的起始值设置为零
通过模型y^=ax+by^=ax+b,我们可以算出y^y^
有了y^y^,就可以用优化方法算去更新参数
重复2和3,直到找到J的最小值
流程图如下:

 

开始
a=0, b=0
计算模型y_hat=ax+b
计算a和b的微分
更新a和b
找到损失函数的最小值
结束
yes
no
下图解释了模型,损失函数和优化方法之间的关系。

模åï¼æ失å½æ°åä¼åæ¹æ³ä¹é´çå³ç³»

Python 实现

理论部分先告一段落,我们现在开始写代码,实现一元线性回归。

首先是模型,这个很简单:

def model(a, b, x):
    return a*x + b

接着,是损失函数:

def cost_function(a, b, x, y):
    n = 5
    return 0.5/n * (np.square(y-a*x-b)).sum()

最后,是优化函数:

def optimize(a,b,x,y):
    n = 5
    alpha = 1e-1
    y_hat = model(a,b,x)
    da = (1.0/n) * ((y_hat-y)*x).sum()
    db = (1.0/n) * ((y_hat-y).sum())
    a = a - alpha*da
    b = b - alpha*db
    return a, b


以上三个函数中a和b是标量(scalar value),x和y是向量(vector) 
至此,一元线性回归的主要部分就完成了。一共才14行代码,是不是很简单。

训练模型

有了模型,损失函数,优化函数,我们就可以训练模型了。具体过程请见附件代码。

这里给出分别训练1次,再训练5次,再训练10次,再训练100,再训练10000次的模型。

1次

10次

100次

10000次

从上面几幅图,我们可以看到,随着训练次数的增加,回归线越来越接近样本了。我们自己写的线性回归比较简单,我只能目测,凭直觉感觉损失函数已经达到了最小值,我们就停在10000次吧。

看得再多,不如自己动手。阅读下一章节之前,请自己实现一元线性回归。

这里有现成的代码,供你参考。

http://download.csdn.net/download/juwikuang/10050886

模型评价

在机器学习中,模型的好坏是有标准的。在回归模型中,我们用R2R2 来评价模型。公式: 
R2=SSR/SSTR2=SSR/SST 
其中 
SSR=∑ni=0(y^i−y¯)SSR=∑i=0n(y^i−y¯) 
SST=∑ni=0(yi−y¯)SST=∑i=0n(yi−y¯) 
y¯y¯ 读作y bar,是y的平均值。 
可以证明SST=SSR+SSESST=SSR+SSE,证明过程又会涉及到期望等概念,我们这里不展开了。

好了,现在你应该回到代码中去计算R2R2 了。

用scikit-learn训练和评价模型

平时在工作中,我们不可能自己去写回归模型,最常用的第三方工具是scikit-learn。 
其官网是: 
http://scikit-learn.org/

以下是ipython代码。

import numpy as np
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
%matplotlib inline

x = [13854,12213,11009,10655,9503] #程序员工资,顺序为北京,上海,杭州,深圳,广州
x = np.reshape(x,newshape=(5,1)) / 10000.0
y =  [21332, 20162, 19138, 18621, 18016] #算法工程师,顺序和上面一致
y = np.reshape(y,newshape=(5,1)) / 10000.0
# 调用模型
lr = LinearRegression()
# 训练模型
lr.fit(x,y)
# 计算R平方
print lr.score(x,y)
# 计算y_hat
y_hat = lr.predict(x)
# 打印出图
plt.scatter(x,y)
plt.plot(x, y_hat)


恭喜你,看完了本文,也学会了一元线性回归。如果对你有帮助,请给我一个赞。你的支持和鼓励是我继续写下去的动力。
--------------------- 
作者:有数可据 
来源:CSDN 
原文:https://blog.csdn.net/juwikuang/article/details/78420337 
版权声明:本文为博主原创文章,转载请附上博文链接!

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值