- 博客(38)
- 资源 (1)
- 收藏
- 关注
原创 Latex05-特殊字符
title: Latex05-特殊字符date: 2022-05-19 16:49:54tags: Latexcategories: Latex基础math: true% 导言区\documentclass{article}\usepackage{ctex}% 正文区(文稿区)\begin{document} \section{空白符号} \section{\LaTeX 控制符} \section{排版符号} \section{\TeX 标志符号}.
2022-05-19 17:16:50 248
原创 Latex04-篇章结构
title: Latex04-篇章结构date: 2022-05-19 15:55:07tags: Latexcategories: Latex基础% 导言区\documentclass{ctexart} % \usepackage{ctex}% 设置标题的格式\ctexset{ section = { format+ = \zihao{-4} \heiti \raggedright, name = {,、}, number =.
2022-05-19 17:15:17 347
原创 Latex03-字体字号设置
title: Latex03-字体字号设置date: 2022-05-19 15:05:46tags: Latexcategories: Latex基础字体属性在Latex中,一个字体有5种属性:字体编码正文字体编码:OT1、T1、EU1等数学字体编码:OML、OMS、OMX等字体族罗马字体:笔画起始处有装饰无衬线字体:笔画起始处无装饰打字机字体:每个字符宽度相同,又称等宽字体字体系列粗细宽度字体形状直立.
2022-05-19 17:12:51 986
原创 Latex02-中文的处理方法
title: ‘Latex02: 中文的处理方法’date: 2022-05-19 14:36:57tags: Latexcategories: Latex基础% 导言区\documentclass{article} %article, book, report, letter(letter 不使用 \maketitle)\usepackage{ctex} % 在cmd命令行窗口输入 `texdoc ctex` 可打开ctex文档\newcommand\degree{^\circ} .
2022-05-19 17:09:24 394
原创 Latex01-Latex源文件的基本结构
基本结构% 导言区\documentclass{article}% 正文区(文稿区)\begin{document} % 一个latex文件(正文区)有且仅有一个document文件 Hello World!\end{document}上面的这段代码是一个简单的 LaTeX\LaTeXLATEX 源文件,主要由两部分组成:导言区、正文区(文稿区)。在 \documentclass 和 \begin{document} 之间的位置称为导言区,document 环境当中的内容是文档
2022-05-16 22:38:12 435
原创 hexo + github + butterfly 搭建你的个人博客保姆级教程(无需云服务器)
hexo + github + butterfly 搭建你的个人博客保姆级教程(无需云服务器)
2022-05-10 16:12:44 1546
原创 p4 编程语言环境配置
文章目录前言**建议直接看第二种方法**一、第一种方法:p4官方教程里的方法(不建议,我没安装成功)1.1 下载并安装 Virtual Box1.2 下载并安装 Vagrant前言p4 (官网链接:https://p4.org/)是一种用于网络设备的领域特定语言,指定数据平面设备(交换机、网卡、路由器、过滤器等)如何处理包。本文主要介绍一下 p4 这门编程语言的虚拟机环境配置,供小伙伴们参考。下面介绍两种环境配置方法,第一种是p4官方教程里的方法(不建议,而且最后我也没安装成功,但是在这里我还是要
2022-04-24 09:16:47 7104 7
原创 numpy中reshap函数参数为-1的情况分析
最近学机器学习的时候,看到这样一段代码:x.reshape(-1,1),一直搞不懂参数-1是什么意思。最后就去看了看官方文档:我们主要看一下红框框里面的内容:The new shape should be compatible with the original shape. If an integer, then the result will be a 1-D array of that length. One shape dimension can be -1. In this case,
2020-10-27 11:16:56 915
原创 python爬取糗事百科段子并发送到邮箱
#coding=utf-8import smtplibfrom email.mime.text import MIMETextfrom email.utils import formataddrimport requestsfrom bs4 import BeautifulSoupr = requests.get('https://www.qiushibaike.com/text/page/1/')soup = BeautifulSoup(r.content,'lxml')content
2020-10-22 10:14:38 229
原创 python opencv读取灰度图并用matplotlib显示灰度图的正确做法
最近在学图像处理,遇到了这样一个问题,如果我们用python opencv读取图片并转换成灰度图,再把它显示出来,我们可以很容易的利用下面这段代码实现:以这幅图片为例:代码:'''Description: Author: Weijian MaDate: 2020-10-13 15:50:15LastEditTime: 2020-10-15 15:13:52LastEditors: Weijian Ma'''import numpy as npimport cv2## 读取图片并
2020-10-15 18:53:56 14808 2
原创 数字图像处理:灰度变换和空间滤波相关练习python opencv实现
题目1:对于如图1所示的5x5的3比特图像,(1) 画出灰度直方图; (2)求直图均衡变换函数,给出计算过程,(3) 给出直方图均衡化以后的图像中每个像素的灰度级; (4) 画出均衡化后的直方图。题目2:用大小为3x3的盒状滤波器对图2的图像进行滤波,图像上方下方各补一行0,左右侧各补一列0,给出滤波响应图。题目3:Roberts、Sobel、 Prewitt 算子对图3对应的图像进行边缘检测,给出检测的结果。
2020-10-13 11:28:11 920
原创 数字图像处理:平滑空间滤波
平滑空间滤波器作用模糊处理:去除图像中一些不重要的细节减小噪声分类平滑线性滤波器:均值滤波器统计排序滤波器(非线性滤波器):最大值滤波器,中值滤波器,最小值滤波器平滑线性滤波器盒状滤波R=19∑i=19ziR=\frac{1}{9}\sum_{i=1}^9z_iR=91i=1∑9zi加权均值滤波g(x,y)=∑s=−aa∑t=bbw(s,t)f(x+s,y+t)∑s=−aa∑t=bbw(s,t)g(x,y)=\frac{\sum_{s=-a}^a\sum_{t=
2020-10-09 15:20:24 549
原创 数字图像处理:空间滤波基础
空间滤波机理使用空间域模板进行的图像处理,称为空域滤波。模板本身被称为空域滤波器。输出图像中的每一点为输入图像中某个相关区域像素集的映射。空间滤波相关概念及理解空间滤波是图像处理领域广泛应用的主要工具之一;“滤波”一次借用于频域处理,其本意是指接受或拒绝一定的频率分量;空间滤波器作用于图像,可以完成平滑、锐化等类似操作;空间滤波器又称作掩模、掩膜、核、模板或窗口;通过掩模操作实现一种邻域运算,待处理像素点的结果由邻域的图像像素以及相应的与邻域有相同维数的子图像得到;模板的形式并没有必要
2020-10-09 14:23:43 1048
原创 数字图像处理:直方图处理
什么是直方图处理?灰度级为[0, ???? − 1] 范围的数字图像的直方图(Histogram)是离散函数h(rk)=nk(k=0,1,...,L−1);h(r_k)=nk(k=0,1,...,L-1);h(rk)=nk(k=0,1,...,L−1);rkr_krk是第k灰度级nkn_knk是图像中灰度级为rkr_krk的像素的个数归一化的直方图:h(rk)=nk/n(k=0,1,...,L−1),n为图像总像素个数,∑kh(rk)=1h(r_k)=n_k/n(k=0,1,..
2020-10-08 21:39:54 1608
原创 数字图像处理:一些基本的灰度变换函数
什么是灰度变换?灰度变换将输入图象映射为输出图象,输出图象每个象素点的灰度值仅由对应的输入象素点的值决定。常用于改变图象的灰度范围及分布,也称为对比度增强、对比度拉伸或灰度变换;灰度变换可以是线性的,也可以是平方的,对数的,或其它任意单调函数的灰度变换;灰度变换可以利用一个LUT(Look-up table)容易实现(或在彩色至少R、G、B三个LUT)。图像反转变换适用于增强图像中暗色区域的灰色细节部分。s=L−1−rs=L-1-rs=L−1−r对于灰度图像:“黑白颠倒”对于彩色图像
2020-10-08 20:49:59 2368
原创 数字图像处理:灰度变换与空间滤波基础知识
图像增强对图像进行处理,使其更适合于某种特定的应用。空间域图像增强图像平面本身,直接对像素进行操作。g(x,y)=T[f(x,y)]g(x,y)=T[f(x,y)]g(x,y)=T[f(x,y)]相关解释:f(x,y)f(x,y)f(x,y)是原图像,g(x,y)g(x,y)g(x,y)是处理后的图像,TTT是作用于fff的操作,定义在(x,y)的邻域。若将邻域大小限制为1x1,则可简化为:s=T(r)s=T(r)s=T(r),rrr是f(x,y)f(x,y)f(x,y)在任意点(x,
2020-10-02 09:44:53 221
原创 CSDN markdown 图片缩放
<center><img src="https://img-blog.csdnimg.cn/20200923173854868.png?watmark/2/text/aHR0cDovL2cuY3Nkbi5uZXQvV5bm1hbjIzMw==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" width="60%">原图:<center><img sr
2020-10-02 09:37:47 302
原创 机器学习11:神经网络中的反向传播算法的简单理解(Backpropagation,BP)
https://www.cnblogs.com/charlotte77/p/5629865.html
2020-09-24 14:52:48 338
原创 机器学习10:神经网络的损失函数(Cost Function)
损失函数:假设一共有mmm个样本,LLL层神经网络,KKK种输出结果:J(Θ)=−1m[∑i=1m∑k=1Kyk(i)log(hΘ(x(i)))k+(1−yk(i))log(1−(hΘ(x(i)))k)]+λ2m∑l=1L−1∑i=1sl∑j=1sl+1(Θji(l))2J(\Theta)=-\frac{1}{m}\left[\sum_{i=1}^m\sum_{k=1}^Ky_k^{(i)}log(h_\Theta(x^{(i)}))_k+(1-y_k^{(i)})log(1-(h_\Theta(x^
2020-09-24 14:49:20 445
原创 数字图像处理:图像的相关操作
阵列与矩阵操作对于下列两个2 X 2的图像:[a11a12a21a22],[b11b12b21b22]\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix},\quad\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}[a11a21a12a22],[b11b21b12b22]阵列相乘的结果为:[a11b11a12b12a2
2020-09-23 23:27:07 348
原创 数字图像处理:像素间的一些基本关系
图像分析的主要目的之一在于获取图像中感兴趣的目标并对目标之间的关系进行分析;目标是由图像中相关像素联合组成的;相关像素在空间的位置和属性都有密切关系,它们一半构成图像中连通组元;所以要分析像素之间的关系,不仅要考虑像素在位置上的联系,还要考虑像素在属性(如灰度)之间的关系。图像的基本组成单元是像素,像素在图像空间中按照某种规律排列,有一定相互联系。1 像素间的基本关系像素之间的关系:邻接、连接、连通、通路像素集合之间的关系:邻接、连接、连通1.1 像素之间的关系:相邻1.2 像素之间的关
2020-09-23 17:43:09 6444 1
原创 数字图像处理:图像的表示与描述
1 数学表示1.1 二维离散函数I=f(x,y)I=f(x,y)I=f(x,y)(x,y)(x,y)(x,y)表示图像像素的坐标函数值f(x,y)f(x,y)f(x,y)表示在坐标(x,y)(x,y)(x,y)处像素的灰度值1.2 二维矩阵I=A[M,N]I=A[M,N]I=A[M,N]对一幅图像采样时,若每行像素为M个,每列像素为N个,则图像大小为M×N个像素,从而A[M, N]构成一个M×N实数矩阵.矩阵元素a(m, n)表示图像在第 m 行 第 n 列的像素值,称为像素或像
2020-09-23 16:29:02 1937
原创 数字图像处理:图像采样与量化
1 为什么要进行图像采样与量化大多数传感器的输出是连续电压波形,为了产生一幅数字图像,需要把连续(空间坐标连续+幅值连续)的感知数据转化为数字形式,这包括两种处理:采样和量化。采样:图像空间连续坐标的离散化,决定图像的空间分辨率。量化:图像函数值(幅值)的数字化,决定图像的幅度(灰度级)分辨率。示例:1.1 图像采样对图像空间坐标的离散化,它决定了图像的空间分辨率。用一个网格把待处理的图像覆盖,然后把每一小格上模拟图像的各个亮度取平均值,作为该小方格中点的值。1.2 图像量化对图像幅
2020-09-23 16:01:26 24494
原创 数字图像处理:图像的感知与获取
图像获取图像获取指的是将物体成像的过程,由“照射”源和形成图像的“场景”元素对光能的反射或吸收而产生的。照射可能由可见光源引起,也可能由电磁能源引起,如雷达、红外线或X射线等。场景元素可能是熟悉的物体,也可能是分子、沉积岩等。主要的图像获取方式使用单个传感器获取图像使用条带传感器获取图像使用传感器阵列获取图像...
2020-09-23 15:10:07 1400
原创 数字图像处理:视觉概述
常见的媒体常见的媒体有声音、文字、图形、图像、动画、视频。其中文字、图形、图像、动画、视频都和视觉相关,所以视觉非常重要。什么是视觉?视觉是光刺激作用于视觉器官而产生的主观映像,人眼是视觉系统的外周感受器。视觉器官主要包括眼睛、视觉通道(视神经等)和视中枢(大脑的枕叶皮层)。从解剖的角度看眼睛最外:角膜和巩膜中间:脉络膜最内:视网膜从功能的角度看眼睛屈光系统:角膜、房水、晶状体、玻璃体构成感光系统:视网膜人"看见"物体的过程物体(发射或反射)的光线,经人眼的屈光媒质(角膜
2020-09-23 15:06:08 766
原创 机器学习09:神经网络入门
什么是神经网络?在生物学中,多个神经元之间会通过轴突传递信息,神经元收到信息后会做出某种反应或者加工处理信息再传给其他神经元。利用这种机理,我们可以创造出人工神经网络,也就是机器学习中的神经网络,但机器学习中的神经网络还是有所不同的,在机器学习中,神经网络大概会呈现出下面这种形状,它包含输入层(Input Layer)、输出层(Out Layer)、隐藏层(Hidden Layer)。根据我的个人理解,生物学中的神经网络结构更类似于一种立体网状结构,机器学习中的神经网络更类似于一种层状结构,把上层的信息
2020-09-22 17:12:11 132
原创 机器学习05:正则化
机器学习05:正则化1 线性回归的正则化1.1 损失函数J(θ)=12m[∑i=1m(hθ(x(i))−y(i))2+λ∑j=0nθj2]J(\theta)=\frac{1}{2m}\left[\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})^2+\lambda\sum_{j=0}^n\theta_j^2 \right]J(θ)=2m1[i=1∑m(hθ(x(i))−y(i))2+λj=0∑nθj2]1.2 梯度下降法Repeat {θ0:=θ0−α1
2020-09-20 18:15:55 114
原创 机器学习04:Logistic 回归(逻辑回归)
机器学习04:Logistic 回归Logistic 回归是一种分类算法1 什么是分类?举个例子:肿瘤有恶性肿瘤和良性肿瘤,根据肿瘤的不同特征,比如说大小,我们可以将肿瘤分为恶性肿瘤和良性肿瘤两类,这就是分类。用0表示良性肿瘤,用1表示恶性肿瘤,那么:y∈{0,1}y\in\left\{0,1\right\}y∈{0,1}在这个分类中,结果只能是0或1,但是假设函数hθ(x)h_\theta(\pmb{x})hθ(xxx)可能大于1也可能小于0,为了使hθ(x)h_\theta(\pmb{x
2020-09-20 16:32:43 120
原创 机器学习03:数据预处理
机器学习:数据预处理数据预处理包括3个方面:特征尺度归一化、降维、特征选择。下面我们将一一介绍。特征尺度归一化在多个特征面前,我们要确保特征在相同的尺度内,也就是说,每个特征值的数量级不能相差过大,或者说,要尽量保证每个特征值的数量级一致。对于未归一化的数据集,如果我们做梯度下降,可能会出现收敛过慢的情况。下面两幅图分别是归一化前和归一化后损失函数的状态(x1x_1x1和x2x_2x2分别是两个特征,0<x1<2000,1<x2<50<x_1<2000,1&l
2020-09-18 20:44:28 452
原创 机器学习02:多变量线性回归
机器学习——多变量回归模型普通表示nnn为特征个数。y=θ0+θ1x1+θ2x2+θ3x3+ ⋅⋅⋅+θnxny=\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_3+\,···+\theta_nx_ny=θ0+θ1x1+θ2x2+θ3x3+⋅⋅⋅+θnxn令x0=1x_0=1x0=1:y=θ0x0+θ1x1+θ2x2+θ3x3+ ⋅⋅⋅+θnxny=\theta_0x_0+\theta_1x_1+\theta_2x_2+\theta
2020-09-18 18:19:54 250
原创 机器学习01:单变量线性回归及python实现
Regression 回归分析线性回归单变量线性回归单变量的意思是只有一个自变量。比如,我们想要根据明天的最高温度预测明天某城市的峰值用电量。我们不可能平白无故地预测明天的数据,而是需要根据以往的数据来预测以后的数据。因此,我们需要收集以往的数据,如下表:最高温度(℉)峰值用电量76.71.8772.71.9271.51.9686.02.4390.04.6987.72.50……散点图:对于单变量线性回归,可表示为如下.
2020-09-17 19:18:10 1578
原创 机器学习之线性回归python实现
线性回归1 方差-损失函数J(a,b)=12n∑i=0n(yi−y^i)2J(a,b)=\frac{1}{2n}\displaystyle \sum_{i=0}^n(y_i- \hat y_i)^2J(a,b)=2n1i=0∑n(yi−y^i)22 优化方法∂J∂a=∂12n∑i=0n(yi−yi^)2∂a=1n∑i=0n(yi−axi−b)∂(yi−axi−b)(−xi)∂a=1n∑i=0n(yi−axi−b)(−xi)=1n∑i=0nx(yi^−yi)\frac{\partial
2020-09-16 19:30:59 223
原创 数据结构与算法01
线性结构和非线性结构线性结构:线性结构作为最常用的数据结构,其特点是数据元素之间存在一对一的线性关系线性结构有两种不同的存储结构,即顺序存储结构和链式存储结构。顺序存储的线性表称为顺序表,顺序表中的存储元素是连续的(地址连续)链式存储的线性表称为链表,链表中的存储元素不一定是连续的(地址不一定连续),元素节点中存放数据元素以及相邻元素的地址信息线性结构常见的有:数组、队列、链表和栈非线性结构非线性结构包括:二维数组, 多维数组,广义表,树结构,图结构稀疏数组和对列1. 引例
2020-05-09 18:54:03 194
原创 数据库SQL(mysql版本)
一、SQL基本概念1.什么是SQL?Structured Query Language:结构化查询语言其实就是定义了操作所有关系型数据库的规则。每一种数据库操作的方式存在不一样的地方,称之为“方言”。2.SQL通用语法SQL语句可以单行或多行书写,以分号结尾可使用空格和缩进来增强语句的可读性MySQL数据库的SQL语句不区分大小写,但是关键字建议大写三种注释:单行注释:-- ...
2020-04-28 18:19:58 405
原创 JDBC、数据库连接池、JDBCTemplate、C3P0、Druid、Spring JDBC
JDBC:Java DataBase Connectivity(Java数据库连接)概念:Java DataBase Connectivity(Java数据库连接),Java语言操作数据库。JDBC本质:其实是官方(sun公司)定义的一套操作所有关系型数据库的规则,即接口。各个数据库厂商去实现这套接口,提供数据库驱动jar包。我们可以使用这套接口(JDBC)编程,真正执行的代码是驱动jar包中...
2020-04-28 18:14:30 218
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人