Spark on yarn和Hadoop on yarn的区别

本文对比了Spark on YARN和Hadoop on YARN的任务执行模型。Spark采用多线程模型,任务启动快,内存共享效率高,适合低延迟作业;而Hadoop MapReduce使用多进程模型,允许细粒度资源控制,适合大作业运行。Spark的Executor资源可连续复用,而MapReduce Task资源释放后无法复用。
摘要由CSDN通过智能技术生成

Apache Spark 的高性能一定程度上取决于它采用的异步并发模型(这里指server/driver 端采用的模型),这与 Hadoop 2.0(包括 YARN 和MapReduce)是一致的。Hadoop 2.0 自己实现了类似 Actor 的异步并发模型,实现方式是 epoll+状态机,而 Apache Spark 则直接采用了开源软件Akka,该软件实现了 Actor 模型,性能非常高。尽管二者在 server 端采用了一致的并发模型,但在任务级别(特指 Spark 任务和 MapReduce 任务)上却采用了不同的并行机制:Hadoop MapReduce 采用了多进程模型,而Spark 采用了多线程模型。

注意,本文的多进程和多线程,指的是同一个节点上多个任务的运行模式。无论是 MapReduce 和 Spark,整体上看,都是多进 程:MapReduce 应用程序是由多个独立的 Task 进程组成的;Spark 应用程序的运行环境是由多个独立的 Executor 进程构建的临时资源池构 成的。


    多进程模型便于细粒度控制每个任务占用的资源,但会消耗较多的启动时间,不适合运

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值