Apache Spark 的高性能一定程度上取决于它采用的异步并发模型(这里指server/driver 端采用的模型),这与 Hadoop 2.0(包括 YARN 和MapReduce)是一致的。Hadoop 2.0 自己实现了类似 Actor 的异步并发模型,实现方式是 epoll+状态机,而 Apache Spark 则直接采用了开源软件Akka,该软件实现了 Actor 模型,性能非常高。尽管二者在 server 端采用了一致的并发模型,但在任务级别(特指 Spark 任务和 MapReduce 任务)上却采用了不同的并行机制:Hadoop MapReduce 采用了多进程模型,而Spark 采用了多线程模型。
注意,本文的多进程和多线程,指的是同一个节点上多个任务的运行模式。无论是 MapReduce 和 Spark,整体上看,都是多进 程:MapReduce 应用程序是由多个独立的 Task 进程组成的;Spark 应用程序的运行环境是由多个独立的 Executor 进程构建的临时资源池构 成的。
多进程模型便于细粒度控制每个任务占用的资源,但会消耗较多的启动时间,不适合运