低照度
文章平均质量分 90
yrhzmu
这个作者很懒,什么都没留下…
展开
-
论文阅读<Joint Correcting and Refinement for Balanced Low-Light Image Enhancement>
低照度图像增强任务需要在亮度、颜色和光照之间进行适当的平衡。而现有的方法往往只关注图像的某一方面,而没有考虑如何关注这种平衡,这会造成颜色失真和过度曝光等问题,这严重影响了人类的视觉感知和高级视觉模型的性能。在这项工作中,提出了一种新颖的协同结构,可以更有效地平衡亮度、颜色和光照。具体而言,本文提出的方法,即所谓的联合校正和精化网络( Joint Correction and Refinement Network,JCRNet ),主要由三个阶段组成,以平衡增强的亮度、颜色和光照。原创 2023-12-17 20:07:04 · 1240 阅读 · 1 评论 -
ZERO-SHOT RESTORATION OF UNDEREXPOSED IMAGES VIA ROBUST RETINEX DECOMPOSITION 论文总结
目录一、论文主要内容二、RRDNet的工作流程三、损失函数1、Retinex重建损失2、纹理增强损失3、光照指导的噪声损失4、损失函数公式三、实验结果四、代码复现结果一、论文主要内容1、提出了RRDNet,不需要提前训练,相反,权重更新依赖于输入单张图像的内部优化,这样确保了在不同场景和多种光照条件下的泛化能力(generalization capability)。2、RRDNet有三个分支,可以预测光照(illumination)、反射率(refle..原创 2022-04-21 12:42:57 · 2993 阅读 · 0 评论 -
论文阅读<Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement>
该论文提出了一种新方法,即零参考深度曲线估计 (Zero-DCE),该方法将光增强制定为使用深度网络进行图像特定曲线估计的任务。我们的方法训练了一个轻量级的深度网络 DCE-Net,去估计给定图像的动态范围调整的逐像素的高阶的曲线。曲线估计是专门设计的,考虑了像素值范围、单调性和可微性。Zero-DCE的吸引力在于其对参考图像的宽松假设,它在训练期间不需要任何配对或未配对的数据。这是通过一组精心制定的非参考损失函数实现的,这些损失函数隐含地衡量增强质量并驱动网络的学习。原创 2023-06-04 15:39:36 · 416 阅读 · 1 评论