描述
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
思路
用前缀和暴力
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int n=nums.size();
int prefix[n+1]{};
for(int i=1;i<=n;i++)prefix[i]=prefix[i-1]+nums[i-1];
int maxv=INT_MIN;
for(int i=0;i<=n;i++)
for(int j=i+1;j<=n;j++){
maxv=max(maxv,prefix[j]-prefix[i]);
}
return maxv;
}
};
动态规划
其实动态规划相对于暴力法过滤了一些不可能的解,核心思路是,遍历数组,如果当前的数比子序和还大,那么前面的这些数就是拖当前这个数的后退了,可以从当前这个数开始一个新的序列,然后对所有的这些可能的序列和取最大值。
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int n=nums.size();
int sum=0;
int maxv=INT_MIN;
for(int &a:nums){
sum=(a>sum+a)?a:sum+a;
maxv=max(maxv,sum);
}
return maxv;
}
};