1. Numpy几乎是Python 生态系统的数值计算的基石,例如Scipy,Pandas,Scikit-learn,Keras等出色的包都基于Numpy。其ndarray(N-dimensional array)比python的list性能优越,在数值计算,机器学习,人工智能,神经网络等领域广泛应用。
详细介绍:
什么是Numpy的ndarray - 一杯明月 - 博客园首先,Numpy的核心是ndarray。 然后,ndarray本质是数组,其不同于一般的数组,或者Python 的list的地方在于它可以有N 维(dimentions),也可简单理解为数组里面嵌套数https://www.cnblogs.com/yibeimingyue/p/13762874.html
numpy.reshape(a, newshape, order='C')简单来说就是不改变数据内容的情况下改变数据的行列大小,行*列 始终等于元素总个数。其中常见用法为传入 -1参数,解释如下:
a.reshape(-1, 1) ====>转变为一列的数组
a.reshape(1, -1) ====>转变为一行的数组
np.reshape(bd, (71, 60, 1))===>将bd转变为一个3维数组,共71个元素,每个元素由60行1列组成。
a.reshape(10, 11) 等同于 a.reshape((10, 11))
参考:numpy中reshape方法详解_zhanggonglalala的博客-CSDN博客_np.reshape函数(转载请注明出处)今天讲一下np.reshape()方法。官方给出的链接https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html,因为是英文所以很多人不好看,这里给出详细解释。这个方法是在不改变数据内容的情况下,改变一个数组的格式,参数及返回值解释如下:一、参数解释首先给出官方的英文解释,当然后续...https://blog.csdn.net/zhanggonglalala/article/details/79356653
a = np.array([[0,1,2,3],[4,5,6,7],[8,9,10,11]])
print(a)
print(a[0:3, 1:4])
#输出结果:
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[ 1 2 3]
[ 5 6 7]
[ 9 10 11]]
a[0:3, 1:4] 解释:此表达式表示取a的[0,3)行、[1,4)列。
2. MinMaxScaler数据归一化,常用方法:
MinMaxScaler(feature_range=(0, 1))==>参数feature_range控制数据压缩到[0,1],常用的的计算方式为 x' = (x - min(x)) / (max(x) - min(x)),也可以定义自己的计算公式。
详细解释:
数据预处理:数据归一化MinMaxScaler_mb5fed71eeb026e的技术博客_51CTO博客_minmaxscaler函数用法minmaxscaler函数用法,数据预处理:数据归一化MinMaxScaler, 机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或将不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”。在以梯度和矩阵为核心的算法中,譬如逻辑回归,支持向量机,神经网络,无量纲化可以加快求解速度;在距离类模型,譬如K近邻,KMeans聚类中,无量纲化可以帮我们提升模型精度,避免某一个取值范围特别大的特征对距离计算造成影响。一个特例是决策树和树的集成算法们,https://blog.51cto.com/u_15072918/2580389
3.