公开课 | 2024清华大模型公开课 第8课 大模型实战指导

本文由readlecture.cn转录总结专注于音、视频转录与总结,2小时视频,5分钟阅读,加速内容学习与传播。

大纲

  • 介绍

    • 个人背景

      • 首席科学官和Hugging Face联合创始人

      • 创建Transformers和Datasets库

      • 从开源转向开放科学

      • 著作《Natural Language Processing with Transformers》

    • Hugging Face概述

      • 开源平台

      • 模型和数据集的托管

      • 用户和组织的使用情况

      • 提供的开源库和工具

  • 构建大型语言模型(LLM)的现状

    • 数据准备

      • 数据的重要性

      • 数据准备的步骤

        • 语言过滤

        • 质量过滤

        • 去重

        • 数据洗牌和分词

      • 数据质量评估

    • 模型训练

      • 训练流程

        • 数据准备

        • 高效训练技术

        • 评估

        • 微调

        • 部署

      • 训练技术和工具

        • Datatrove

        • Nanotron

        • LightEval

        • TRL

        • Text Generation Inference

    • 模型架构和并行化

      • 模型架构

        • 混合专家系统(MoE)

        • Mamba(非Transformer架构)

      • 并行化技术

        • 数据并行

        • 张量并行

        • 流水线并行

        • 序列并行

    • 模型部署和推理

      • 量化

      • 推理优化

      • 模型共享和评估

  • 结论

    • 总结和未来展望

内容总结

一句话总结

本文详细介绍了2024年构建大型语言模型的现状,包括数据准备、模型训练、架构设计、并行化技术以及模型部署和推理的最新进展。

观点与结论

  • 开源模型在成本和透明度方面具有优势,但性能通常低于闭源模型。

  • 数据质量对模型性能至关重要,需要仔细准备和评估。

  • 并行化技术是提高模型训练效率的关键,包括数据并行、张量并行、流水线并行和序列并行。

  • 模型部署时需要考虑量化和推理优化,以提高效率和降低成本。

  • 开放科学和共享模型是推动AI领域发展的重要途径。

自问自答

  1. 问:Hugging Face的主要功能是什么?

    • 答:Hugging Face是一个开源平台,主要用于托管模型和数据集,提供各种开源库和工具,支持模型开发、部署和研究。

  2. 问:为什么数据准备对大型语言模型如此重要?

    • 答:数据质量直接影响模型性能,因此需要仔细准备和评估数据,包括语言过滤、质量过滤、去重和分词等步骤。

  3. 问:有哪些并行化技术可以提高模型训练效率?

    • 答:常用的并行化技术包括数据并行、张量并行、流水线并行和序列并行,这些技术可以有效提高训练效率和利用GPU资源。

  4. 问:模型部署时需要考虑哪些因素?

    • 答:模型部署时需要考虑量化、推理优化和模型共享,以提高效率、降低成本并促进模型的广泛应用。

  5. 问:开放科学在AI领域中的作用是什么?

    • 答:开放科学通过共享方法和知识,促进AI领域的透明度和合作,有助于推动整个领域的发展和进步。

关键词标签

  • 大型语言模型

  • 数据准备

  • 模型训练

  • 并行化技术

  • 模型部署

  • 开源平台

  • 开放科学

适合阅读人群

  • AI研究人员

  • 数据科学家

  • 软件工程师

  • 技术爱好者

  • 学术界人士

术语解释

  • 开源模型:指源代码公开可用的模型,用户可以自由修改和分发。

  • 闭源模型:指源代码不公开的模型,用户无法访问其内部实现。

  • 并行化技术:指在多个计算资源上同时执行任务的技术,以提高效率和性能。

  • 量化:指将模型参数从高精度转换为低精度的过程,以减少模型大小和提高推理速度。

  • 混合专家系统(MoE):一种模型架构,通过路由机制将输入分配给不同的专家网络。

  • Mamba:一种非Transformer的模型架构,具有更快的推理速度。

  • Flash Attention:一种高效的注意力计算方法,避免生成完整的注意力矩阵。

  • Direct Preference Optimization (DPO):一种简化的人类反馈强化学习方法,减少模型复杂性。

视频来源

bilibili: Lecture 8 大模型实战指导_哔哩哔哩_bilibili

讲座回顾

  • 演示文稿内容:总结2024年构建大型语言模型的现状。

  • 内容涵盖:当前位置、地位及公开了解的信息。

  • 贡献团队:中国团队和清华大学团队。

  • 目的:尽管观点可能不新鲜,但汇集信息仍具趣味性。

这是几周前我准备的一个演示文稿,总结了2024年构建大型语言模型的现状,包括我们目前的位置、我们的地位以及我们所公开了解的内容。这个演示文稿有很大一部分是由中国团队和清华大学团队贡献的。祝贺他们,尽管其中许多观点对你们中的一些人来说可能并不新鲜,但将它们汇集在一起或许仍然颇具趣味。

  • 作者是Hugging Face的首席科学官兼联合创始人。

  • 创建了Transformers和Datasets库。

  • 从开源转向开放科学,关注AI领域的方法论和知识分享。

  • 观察到AI研究变得更为封闭,对此表示遗憾。

  • 撰写了《基于Transformers的自然语言处理》一书,但承认可能存在个人偏见。

在某个角落,我想简单介绍一下自己。我是Hugging Face的首席科学官兼联合创始人。我在Hugging Face创建了Transformers和Datasets库。最近,我逐渐从开源转向更专注于开放科学,旨在分享人工智能领域的方法论和知识。这一转变的部分原因在于,我注意到与过去相比,现在的AI研究似乎变得更加封闭,我认为这颇为遗憾。此外,我还撰写了一本名为《基于Transformers的自然语言处理》的书籍。不过,我得承认,由于是我自己写的,我可能会有所偏颇。

我写了这篇文章,不过确实,今天天气很好。所以我会快速介绍一下什么是 Hugging Face,然后。2024年如何构建大型语言模型?

  • Hugging Face 是一个基于开源理念的平台。

  • 开源模型与闭源模型在安全性、成本和性能方面有显著差异。

  • 开源模型提供更高的透明度和控制权,允许用户进行定制和微调。

  • 开源模型成本较低,延迟小,但性能通常低于闭源模型。

  • 开源模型正在迅速改进,一些中国模型如 Yiyi、DeepSeek 和 MiniCPM 正在追赶闭源模型。

那么,Hugging Face 是什么?Hugging Face 是一个围绕开源理念构建的平台。在这里,我将简要讨论开源模型与闭源模型之间的区别。我承认自己对开源模型有些偏爱,但在使用闭源模型时也有许多有趣之处值得考虑。

在安全性方面,你可以将模型托管在自己的数据中心或笔记本电脑上。将模型保存在本地设备(如笔记本电脑)上是有益的。你对开源模型有更大的控制权,因为它们类似于开源代码,就像一个开放的盒子。你可以进行定制、微调和修改部分内容。开源模型更加透明,让你能看到用于创建模型的数据和代码。有时,你只能访问模型的权重,这透明度较低,但总体而言,开源模型提供了更多的透明度。你可以理解模型及其支持其功能的相关系统。

在成本方面,开源模型相当经济实惠。你经常能在开源项目中找到较小的模型,如果在自己的笔记本电脑上运行,成本非常低。延迟可以非常低,特别是如果你在本地运行模型或模型本身较小。目前,开源模型的质量是限制因素,因为它们的性能通常低于闭源模型。然而,开源模型在最近几个月和几年里迅速改进。一些令人印象深刻的中国模型,如 Yi、DeepSeek 和 MiniCPM,正在与闭源模型强势追赶。在2024年,使用开源模型是令人兴奋的。

  • Hugging Face 是一个托管模型数据集和演示的平台。

  • 平台目前拥有接近100万个模型,数量以指数级增长。

  • 平台拥有超过10万个数据集,数据集数量大约在200万到400万之间。

所以,Hugging Face 是一个托管模型数据集和演示的平台。我们拥有大量的模型,实际上,这个说法已经有点过时了,因为我们现在接近拥有100万个模型。这个数字正在以指数级增长。我们拥有超过10万个数据集,大约在200万到400万之间。

用户几乎无处不在,至少在众多组织中都能见到他们的身影,我们通常将他们视为介于各大组织之间的独立第三方。

  • 该组织专注于人工智能领域,提供多种开源库。

  • 这些开源库支持模型开发和部署的全过程。

  • 具体库如Transformers和Accelerate,以及相关数据集,用于模型构建、应用和研究。

  • 开发后的模型可用于推理部署。

该组织在人工智能领域运作,提供众多开源库,这些库可在模型开发和部署的全

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值